Skip to main content Accessibility help
×
Home

Analyzing mechanical properties of a nanocrystalline Fe–Ni coating by nanoindentation

  • Lian-Hao Yi (a1), Chun-Ying Lee (a2), Liuwen Chang (a3), Ting-Ruei Lee (a3) and Po-We Kao (a3)...

Abstract

Systematic nanoindentation experiments have been carried out to study the mechanical properties of a nanocrystalline Fe–51Ni coating exhibiting anelastic and creep characteristics. An analytical method based on the correspondence principle for linear viscoelasticity was developed. The holding displacement–time data obtained in indentation creep tests at a high loading rate of 20 mN/s were analyzed, and material parameters related to the elastic, anelastic, and creep characteristics were derived using a model containing one Maxwell unit and two Kelvin units. The anelastic deformation thus contains at least two relaxation processes having relaxation times of 0.37 and 6.8 s, respectively, and the creep deformation is described by a viscosity value of 4.2 × 104 GPa·s for the alloy in an as-deposited state. The anelastic and creep characteristics descend associated with increases of the elastic modulus and hardness values after the alloy was annealed at 673 K.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: lwchang@mail.nsysu.edu.tw

References

Hide All
1.Pan, D., Nieh, T.G., and Chen, M.W.: Strengthening and softening of nanocrystalline nickel during multistep nanoindentation. Appl. Phys. Lett. 88, 161922 (2006).
2.Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).
3.Schuh, C.A., Nieh, T.G., and Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).
4.Yang, B. and Vehoff, H.: Dependence of nanohardness upon indentation size and grain size—A local examination of the interaction between dislocations and grain boundaries. Acta Mater. 55, 849 (2007).
5.Fan, G.J., Jiang, W.H., Liu, F.X., Choo, H., Liaw, P.K., Yang, B., Fu, L.F., and Browning, N.D.: The effects of tensile plastic deformation on the hardness and Young’s modulus of a bulk nanocrystalline alloy studied by nanoindentation. J. Mater. Res. 22, 1235 (2007).
6.Sansoz, F. and Dupont, V.: Atomic mechanism of shear localization during indentation of a nanostructured metal. Mater. Sci. Eng., C 27, 1509 (2007).
7.Trelewicz, J.R. and Schuh, C.A.: The Hall-Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 55, 5948 (2007).
8.Pan, D. and Chen, M.W.: Rate-change instrumented indentation for measuring strain rate sensitivity. J. Mater. Res. 24, 1466 (2009).
9.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
10.Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).
11.Cheng, Y.T.: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81, 9 (2001).
12.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
13.Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., and Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).
14.Ngan, A.H.W. and Tang, B.: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).
15.Fujisawa, N. and Swain, M.V.: Nanoindentation-derived elastic modulus of an amorphous polymer and its sensitivity to load-hold period and unloading strain rate. J. Mater. Res. 23, 637 (2008).
16.Feng, G. and Ngan, A.H.W.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).
17.Ma, Z., Long, S., Pan, Y., and Zhou, Y.: Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films. J. Mater. Sci. 43, 5952 (2008).
18.Chudoba, T. and Richter, F.: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Tech. 148, 191 (2001).
19.Sakai, S., Tanimoto, H., Kita, E., and Mizubayashi, H.: Characteristic creep behavior of nanocrystalline metals found for high-density gold. Phys. Rev. B 66, 214106 (2002).
20.Tanimoto, H., Sakai, S., and Mizubayashi, H.: Anelasticity study on motions of atoms in the grain boundary regions in nanocrystalline gold. Mater. Trans. 44, 53 (2003).
21.Lohmiller, J., Eberl, C., Schwaiger, R., Kraft, O., and Balk, T.J.: Mechanical spectroscopy of nanocrystalline nickel near room temperature. Scr. Mater. 59, 467 (2008).
22.Oyen, M.L.: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55, 3633 (2007).
23.Liu, C.K., Lee, S., Sung, L.P., and Nguyen, T.: Load-displacement relations for nanoindentation of viscoelastic materials. J. Appl. Phys. 100, 033503 (2006).
24.Lu, H., Wang, B., Ma, J., Huang, G., and Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).
25.Oyen, M.L.: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 (2006).
26.Yang, S., Zhang, Y.W., and Zeng, K.: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 (2004).
27.Findley, W.N., Lai, J.S., and Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials (North-Holland, New York, 1976), p. 71.
28.Bonetti, E., Campari, E.G., Bianco, L.D., Pasquini, L., and Sampaolesi, E.: Mechanical behaviour of nanocrystalline iron and nickel ln the quasi-static and low frequency anelastic regime. Nanostruct. Mater. 11, 709 (1999).
29.Fu, H.H., Benson, D.J., and Meyers, M.A.: Analytical and computational description of effect of grain size on yield stress of metals. Acta Mater. 49, 2567 (2001).
30.Brandes, E.A. and Brook, G.B.: Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann Ltd, Oxford, United Kingdom, 1998), pp. 13117.
31.Kang, Y.S., Lee, J.S., Divinski, S.V., and Herzig, Chr.: Ni grain boundary diffusion in coarse-grained Fe-40 wt.% Ni alloy and comparison with Ni diffusion in the nanocrystalline alloy. Z. Metallkd. 95, 76 (2004).
32.Renaud, G-P. and Steinemann, S.G.: High temperature elastic constants of Fe-Ni invar alloys, in Physical Metallurgy of Controlled Expansion Invar-Type Alloys, edited by Russell, K.C., Smith, D.F. (The Minerals, Metals & Materials Society, Warrendale, PA, 1990), p. 225.
33.Huang, X., Hansen, N., and Tsuji, N.: Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249 (2006).
34.Chang, L., Kao, P.W., and Chen, C-H.: Strengthening mechanisms in electrodeposited Ni-P alloys with nanocrystalline grains. Scr. Mater. 56, 713 (2007).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed