Skip to main content Accessibility help

An investigation on shape memory behaviors of epoxy resin system

  • Kun Wei (a1), Biao Ma (a1), Yu Liu (a1), Hainian Wang (a1) and Ning Li (a1)...


Shape-memory epoxy is receiving considerable attention because of its superior mechanical and thermal properties and excellent shape-memory performance. In this study, a novel series of shape-memory epoxy resins are prepared using hydro-epoxy, hexahydrophthalic anhydride, and diglycidyl 4,5-epoxy tetrahydro phthalate (TDE-85) to further improve the recovery force of shape-memory epoxy resins. The thermal, mechanical, and shape-memory properties of the shape-memory epoxy resin system are investigated by differential scanning calorimetry, dynamic mechanical analysis, bend test, and shape recovery test. Results indicate that the glass transition temperature (T g), rubber modulus, and room-temperature bend strength increase as TDE-85 content increases. Investigation of the shape-memory behavior of the resin reveals that full recovery can be achieved after only several minutes when the temperature is equal to or above T g. The shape recovery time decreases with the increase in TDE-85 content at T g, T g + 10 °C, and T g + 20 °C. These results are attributed to the increase in TDE-85 content.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All
1. Hearon, K., Besset, C.J., Lonnecker, A.T., Ware, T., Voit, W.E., Wilson, T.S., Wooley, K.L., and Maitland, D.J.: A structural approach to establishing a platform chemistry for the tunable, bulk electron beam cross-linking of shape memory polymer systems. Macromolecules 46, 8905 (2013).
2. Bai, Y.K., Jiang, C., Wang, Q.H., and Wang, T.M.: Multi-shape-memory property study of novel poly(ε-caprolactone)/ethyl cellulose polymer networks. Macromol. Chem. Phys. 214, 2465 (2013).
3. Xie, T., Xiao, X.C., and Cheng, Y.T.: Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30, 1823 (2009).
4. Domeier, L., Nissen, A., Goods, S., Whinnery, L.R., and McElhanon, J.: Thermomechanical characterization of thermoset urethane shape-memory polymer foams. J. Appl. Polym. Sci. 115, 3217 (2010).
5. Lakhera, N., Laursen, C.M., Safranski, D.L., and Frick, C.P.: Biodegradable thermoset shape-memory polymer developed from poly(β-amino ester) networks. J. Polym. Sci., Part B: Polym. Phys. 50, 777 (2012).
6. Fulcher, J.T., Karaca, H.E., Tandon, G.P., and Lu, Y.C.: Thermomechanical and shape memory properties of thermosetting shape memory polymer under compressive loadings. J. Appl. Polym. Sci. 129, 1096 (2013).
7. Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., and Tang, C.: Stimulus-responsive shape memory materials: A review. Mater. Des. 33, 577 (2012).
8. Huang, W.M., Zhao, Y., Wang, C.C., Ding, Z., Purnawali, H., Tang, C., and Zhang, J.L.: Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. J. Polym. Res. 19, 9952 (2012).
9. Wu, X.L., Huang, W.M., and Tan, H.X.: Characterization of shape recovery via creeping and shape memory effect in ether-vinyl acetate copolymer (EVA). J. Polym. Res. 20, 150 (2013).
10. Santo, L.: Shape memory epoxy foams: New materials for aerospace applications. Mater. Sci. Forum 706, 165 (2012).
11. De Nardo, L., Bertoldi, S., Tanzi, M.C., Haugen, H.J., and Farè, S.: Shape memory polymer cellular solid design for medical applications. Smart Mater. Struct. 20, 035004 (2011).
12. Chan Vili, Y.Y.F.: Investigating smart textiles based on shape memory materials. Text. Res. J. 77, 290 (2007).
13. Yang, D., Huang, W., Yu, J.H., Jiang, J.S., Zhang, L.Y., and Xie, M.R.: A novel shape memory polynorbornene functionalized with poly(ɛ-caprolactone) side chain and cyano group through ring-opening metathesis polymerization. Polymer 51, 5100 (2010).
14. Le, D.M., Kulangara, K., Adler, A.F., Leong, K.W., and Ashby, V.S.: Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(Iμ-caprolactone) surfaces. Adv. Mater. 23, 3278 (2011).
15. Sahoo, N.G., Jung, Y.C., Yoo, H.J., and Cho, J.W.: Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites. Compos. Sci. Technol. 67, 1920 (2007).
16. Milad, M., Mohammad, R.N., and Mehdi, B.: Effect of block ratio and strain amplitude on thermal, structural, and shape memory properties of segmented polycaprolactone-based polyurethanes. J. Mater. Sci. 49, 7575 (2014).
17. Han, J.J., Fei, G.X., Li, G., and Xia, H.S.: High intensity focused ultrasound triggered shape memory and drug release from biodegradable polyurethane. Macromol. Chem. Phys. 214, 1195 (2013).
18. Xu, B., Fu, Y.Q., Huang, W.M., Pei, Y.T., Chen, Z.G., De Hosson, J.T.M., Kraft, A., and Reuben, R.L.: Thermal-mechanical properties of polyurethane-clay shape memory polymer nanocomposites. Polymer 2, 31 (2010).
19. Richard, B., Korey, G., and Lisa, M.W.: Mechanical and curing properties of a styrene-based shape memory polymer. J. Intell. Mater. Syst. Struct. 21, 677 (2010).
20. Fei, P.Z. and Cavicchi, K.A.: Synthesis and characterization of a poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) shape memory ABA triblock copolymer. ACS Appl. Mater. Interfaces 2, 2797 (2010).
21. Feldkamp, D.M. and Rousseau, I.A.: Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol. Mater. Eng. 295, 726 (2010).
22. Zheng, N., Fang, G.Q., Cao, Z.L., Zhao, Q., and Xie, T.: High strain epoxy shape memory polymer. Polym. Chem. 6, 3046 (2015).
23. Liu, Y.Y., Han, C.M., Tan, H.F., and Du, X.W.: Thermal, mechanical and shapememory properties of shape memory epoxy resin. Mater. Sci. Eng., A 527, 2510 (2010).
24. Xie, T. and Rousseau, I.A.: Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50, 1852 (2009).
25. Liu, Y.P., Gall, K., Dunn, M.L., and McCluskey, P.: Thermomechanics of shape memory polymer nanocomposites. Mech. Mater. 36, 929 (2004).
26. Meng, Q.H. and Hu, J.L.: A review of shape memory polymer composites and blends. Composites, Part A 40, 1661 (2009).
27. Gunes, I.S. and Jana, S.C.: Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials. J. Nanosci. Nanotechnol. 8, 1616 (2008).
28. Leng, J.S., Wu, X.L., and Liu, Y.J.: Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer. Smart Mater. Struct. 18, 095031 (2009).
29. Wei, K., Zhu, G.M., Tang, Y.S., Liu, T.T., and Xie, J.Q.: The effects of crosslink density on thermo-mechanical properties of shape-memory hydro-epoxy resin. J. Mater. Res. 28, 2903 (2013).
30. Sheng, S.J., Hu, X., Wang, F., Ma, Q.Y., and Gu, M.F.: Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology. Mater. Sci. Eng., C 49, 612 (2015).
31. Zhang, R.C., Li, R., Lu, A., Jin, Z.J., Liu, B.Q., and Xu, Z.B.: The glass transition temperature of poly(phenylene sulfide) with various crystallinities. Polym. Int. 62, 449 (2013).
32. Wei, K., Zhu, G.M., Tang, Y.S., Tian, G.M., and Xie, J.Q.: Thermomechanical properties of shape-memory hydro-epoxy resin. Smart Mater. Struct. 21, 055022 (2012).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed