Skip to main content Accessibility help

An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters

  • Erik J. Sheets (a1), Wei-Chang Yang (a2), Robert B. Balow (a3), Yunjie Wang (a4), Bryce C. Walker (a4), Eric A. Stach (a5) and Rakesh Agrawal (a6)...


The search for alternative earth abundant semiconducting nanocrystals for sustainable energy applications has brought forth the need for nanoscale syntheses beyond bulk synthesis routes. Of particular interest are metal phosphides and derivative I–V–VI chalcogenides including copper phosphide (Cu3P) and copper thiophosphate (Cu3PS4). Herein, we report a one-pot, solution-based synthesis of Cu3P nanocrystals utilizing an in situ phosphorus source: phosphorus pentasulfide (P2S5) in trioctylphosphine. By injecting this phosphorus source into a copper solution in oleylamine, uniform and size controlled Cu3P nanocrystals with a phosphorous-rich surface are synthesized. The subsequent reaction of the Cu3P nanocrystals with decomposing thiourea forms nanoscale Cu3PS4 particles having p-type conductivity and an effective optical band gap of 2.36 eV. The synthesized Cu3PS4 produces a cathodic photocurrent during photoelectrochemical measurements, demonstrating its application as a light-absorbing material. Our process creates opportunities to explore other solution-based metal-phosphorus systems and their subsequent sulfurization for earth abundant, alternative energy materials.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Brock, S.L. and Senevirathne, K.: Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications. J. Solid State Chem. 181, 15521559 (2008).
2. Oyama, S.T., Gott, T., Zhao, H., and Lee, Y-K.: Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 143, 94107 (2009).
3. Wang, J., Yang, Q., Zhang, Z., Li, T., and Zhang, S.: Synthesis of InP nanofibers from tri(m-tolyl)phosphine: An alternative route to metal phosphide nanostructures. Dalton Trans. 39, 227233 (2010).
4. Pfeiffer, H., Tancret, F., and Brousse, T.: Synthesis, characterization and electrochemical properties of copper phosphide (Cu3P) thick films prepared by solid-state reaction at low temperature: A probable anode for lithium ion batteries. Electrochim. Acta, 50, 47634770 (2005).
5. Stan, M.C., Klöpsch, R., Bhaskar, A., Li, J., Passerini, S., and Winter, M.: Cu3P binary phosphide: Synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries. Adv. Energy Mater. 3, 231238 (2013).
6. Villevieille, C., Robert, F., Taberna, P.L., Bazin, L., Simon, P., and Monconduit, L.: The good reactivity of lithium with nanostructured copper phosphide. J. Mater. Chem. 18, 5956 (2008).
7. Aitken, J.A., Ganzha-Hazen, V., and Brock, S.L.: Solvothermal syntheses of Cu3P via reactions of amorphous red phosphorus with a variety of copper sources. J. Solid State Chem. 178, 970975 (2005).
8. Xie, Y., Su, H.L., Qian, X.F., Liu, X.M., and Qian, Y.T.: A mild one-step solvothermal route to metal phosphides (metal = Co, Ni, Cu). J. Solid State Chem. 91, 8891 (2000).
9. Carenco, S., Hu, Y., Florea, I., Ersen, O., Boissie, C., Me, N., and Sanchez, C.: Metal-dependent interplay between crystallization and phosphorus diffusion during the synthesis of metal phosphide nanoparticles. Chem. Mater. 24, 41344145 (2012).
10. Park, J., Koo, B., Yoon, K.Y., Hwang, Y., Kang, M., Park, J-G., and Hyeon, T.: Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. J. Am. Chem. Soc. 127, 84338440 (2005).
11. Henkes, A.E., Vasquez, Y., and Schaak, R.E.: Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc. 129, 18961897 (2007).
12. Henkes, A.E. and Schaak, R.E.: A general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem. Mater. 19, 42344242 (2007).
13. De Trizio, L., Figuerola, A., Manna, L., Genovese, A., George, C., Brescia, R., Saghi, Z., Simonutti, R., Van Huis, M., and Falqui, A.: Size tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals. ACS Nano 6, 3241 (2012).
14. Itthibenchapong, V., Kokenyesi, R.S., Ritenour, A.J., Zakharov, L.N., Boettcher, S.W., Wager, J.F., and Keszler, D.A.: Earth-abundant Cu-based chalcogenide semiconductors as photovoltaic absorbers. J. Mater. Chem. C 1, 657 (2013).
15. Yu, L., Kokenyesi, R.S., Keszler, D.A., and Zunger, A.: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 4348 (2013).
16. Foster, D.H., Jieratum, V., Kykyneshi, R., Keszler, D.A., and Schneider, G.: Electronic and optical properties of potential solar absorber Cu3PSe4 . Appl. Phys. Lett. 99, 181903 (2011).
17. Balow, R.B., Sheets, E.J., Abu-Omar, M.M., and Agrawal, R.: Synthesis and characterization of copper arsenic sulfide nanocrystals from earth abundant elements for solar energy conversion. Chem. Mater. 27, 22902293 (2015).
18. Nitsche, R. and Wild, P.: Crystal growth of metal-phosphorus-sulfur compounds by vapor transport. Mater. Res. Bull. 5, 419423 (1970).
19. Marzik, J.V., Hsieh, A.K., Dwight, K., and Wold, A.: Photoelectronic properties of Cu3PS4 and Cu3PS3Se single crystals. J. Solid State Chem. 49, 4350 (1983).
20. Blachnik, R., Gather, B., and Andrae, E.: Ternary chalcogenide systems: the Quasiternary System Ag2S-Cu2S-P4S10 . J. Therm. Anal. 37, 12891298 (1991).
21. Andrae, H.: Metal sulphide-tetraphosphorusdekasulphide phase diagrams. J. Alloys Compd. 189, 209215 (1992).
22. Pfitzner, A. and Reiser, S.: Refinement of the crystal structures of Cu3PS4 and Cu3SbS4 and a comment on normal tetahedral structures. Z. Kristallogr. 217, 5154 (2002).
23. Uk Son, S., Kyu Park, I., Park, J., and Hyeon, T.: Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. 1, 778779 (2004).
24. Chen, S., Zhang, X., Zhang, Q., and Tan, W.: Trioctylphosphine as both solvent and stabilizer to synthesize CdS nanorods. Nanoscale Res. Lett. 4, 11591165 (2009).
25. Hou, X., Zhang, X., Chen, S., Fang, Y., Yan, J., Li, N., and Qi, P.: Facile synthesis of SERS active Ag nanoparticles in the presence of tri-n-octylphosphine sulfide. Appl. Surf. Sci. 257, 49354940 (2011).
26. Olofsson, O.: The Crystal Structure of Cu3P. Acta Chem. Scand. 26, 27772787 (1972).
27. Mobarok, M.H. and Buriak, J.M.: Elucidating the surface chemistry of zinc phosphide nanoparticles through ligand exchange. Chem. Mater. 26(15), 4653 (2014).
28. De Trizio, L., Gaspari, R., Bertoni, G., Kriegel, I., Moretti, L., Scotognella, F., Maserati, L., Zhang, Y., Messina, G.C., Prato, M., Marras, S., Cavalli, A., and Manna, L.: Cu3-xP nanocrystals as a material platform for near-infrared plasmonics and cation exchange reactions. Chem. Mater. 27, 11201128 (2015).
29. Wang, S., Gao, Q., and Wang, J.: Thermodynamic analysis of decomposition of thiourea and thiourea oxides. J. Phys. Chem. B 109, 1728117289 (2005).
30. Timchenko, V.P., Novozhilov, A.L., and Slepysheva, O.A.: Kinetics of Thermal Decomposition of Thiourea. Russ. J. Gen. Chem. 74, 10461050 (2004).
31. Unold, T. and Gütay, L.: Photoluminescence analysis of thin-film solar cells. In Advanced Characterization Techniques for Thin Film Solar Cells, Abou-Ras, D., Kirchartz, T., and Rau, U. eds.; Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011; pp. 151175.


Type Description Title
Supplementary materials

Sheets supplementary material S1
Sheets supplementary material

 Word (4.5 MB)
4.5 MB

An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters

  • Erik J. Sheets (a1), Wei-Chang Yang (a2), Robert B. Balow (a3), Yunjie Wang (a4), Bryce C. Walker (a4), Eric A. Stach (a5) and Rakesh Agrawal (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed