Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:55:14.126Z Has data issue: false hasContentIssue false

Al stabilized TiC twinning platelets

Published online by Cambridge University Press:  23 April 2014

Hui Zhang
Affiliation:
High-Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and University of Chinese Academy of Sciences, Beijing 100049, China
Xiaohui Wang
Affiliation:
High-Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Zhaojin Li
Affiliation:
High-Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and University of Chinese Academy of Sciences, Beijing 100049, China
Yanchun Zhou*
Affiliation:
Science and Technology of Advanced Functional Composite Laboratory, ARIMPT, Beijing 100076, China
*
a)Address all correspondence to this author. e-mail: yczhou714@gmail.com
Get access

Abstract

Titanium carbide (TiC) twins are believed to be extremely unstable because of their high twin boundary energy. Here, we report that TiC twins are always presented in platelets with dimensions of 2–3 μm in length and less than 300 nm in width. In-depth microstructural characterizations by high-resolution transmission electron microscopy demonstrate that Al atoms at the twin boundary play a decisive role in stabilizing TiC twins. With different amounts of Al, perfect and defective TiC twins are formed. For perfect twins, three types of twin boundaries can be formed depending on the amount of remaining Al at the twin boundary. With inadequate Al, the TiC twins become defective with certain degrees of deviation from the perfect twin orientation. Based on a detailed analysis of the microstructure of the twin boundaries, a mechanism for the formation and stabilization of TiC twins is proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Luo, S.D., Li, Q., Tian, J., Wang, C., Yan, M., Schaffer, G.B., and Qian, M.: Self-assembled, aligned TiC nanoplatelet-reinforced titanium composites with outstanding compressive properties. Scripta Mater. 69(1), 29 (2013).CrossRefGoogle Scholar
Hsu, M., Meyers, M., and Berkowitz, A.: Synthesis of nanocrystalline titanium carbide by spark erosion. Scripta Metall. Mater. 32(6), 805 (1995).CrossRefGoogle Scholar
Gu, D., Meng, G., Li, C., Meiners, W., and Poprawe, R.: Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement. Scripta Mater. 67(2), 185 (2012).Google Scholar
Sherif El-Eskandarany, M.: Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. J. Alloys Comp. 305(1), 225 (2000).Google Scholar
Sen, A., Kar, T., and Pradhan, S.K.: One step quickest mechanosynthesis of nanocrystalline Ti0.9Si0.1C and its microstructure characterization. J. Alloys Comp. 557(0), 47 (2013).CrossRefGoogle Scholar
Lu, K.: The future of metals. Science 328(5976), 319 (2010).Google Scholar
Tian, Y., Xu, B., Yu, D., Ma, Y., Wang, Y., Jiang, Y., Hu, W., Tang, C., Gao, Y., Luo, K., Zhao, Z., Wang, L.M., Wen, B., He, J., and Liu, Z.: Ultrahard nanotwinned cubic boron nitride. Nature 493(7432), 385 (2013).CrossRefGoogle ScholarPubMed
Gutierrez-Urrutia, I. and Raabe, D.: Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater. 60(16), 5791 (2012).Google Scholar
Zhang, J. and Zhou, Y.C.: Microstructure, mechanical, and electrical properties of Cu–Ti3AlC2 and in situ Cu–TiC x composites. J. Mater. Res. 23(4), 924 (2008).Google Scholar
Yu, R., Zhan, Q., He, L.L., Zhou, Y.C., and Ye, H.Q.: Si-induced twinning of TiC and formation of Ti3SiC2 platelets. Acta Mater. 50(16), 4127 (2002).CrossRefGoogle Scholar
Yu, R., He, L.L., and Ye, H.Q.: Effects of Si and Al on twin boundary energy of TiC. Acta Mater. 51(9), 2477 (2003).Google Scholar
Hu, W.T., Liu, S.C., Wen, B., Xiang, J.Y., Wen, F.S., Xu, B., He, J.L., Yu, D.L., Tian, Y.J., and Liu, Z.Y.: {111}-specific twinning structures in nonstoichiometric ZrC0.6 with ordered carbon vacancies. J. Appl. Crystallogr. 46(1), 43 (2013).Google Scholar
Zhang, H., Wang, X.H., Li, Z.J., Liu, M.Y., and Zhou, Y.C.: A novel Ni2AlTi-containing composite with excellent wear resistance and anomalous flexural strength. Mater. Sci. Eng., A 597(0), 70 (2014).Google Scholar
Kooi, B.J., Kabel, M., Kloosterman, A.B., and De Hosson, J.T.M.: Reaction layers around SiC particles in Ti: an electron microscopy study. Acta Mater. 47(10), 3105 (1999).Google Scholar
Chien, F.R., Nutt, S.R., and Cummings, D.: Defect structures in single crystal TiC. Philos. Mag. A 68(2), 325 (1993).Google Scholar
Venables, J.: Stacking faults in TiC. Phys. Status Solidi B 15(1), 413 (1966).Google Scholar
Zhang, J., Wang, J.Y., and Zhou, Y.C.: Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu–Ti3AlC2 composites. Acta Mater. 55(13), 4381 (2007).Google Scholar
Zhou, Y.C., Sun, Z.M., and Yu, B.H.: Microstructure of Ti3SiC2 prepared by the in-situ hot pressing/solid–liquid reaction process. Z. Metallkd. 91(11), 937 (2000).Google Scholar
Zhou, Y.C. and Sun, Z.M.: Crystallographic relations between Ti3SiC2 and TiC. Mater. Res. Innovat. 3(5), 286 (2000).CrossRefGoogle Scholar
Wang, X.H. and Zhou, Y.C.: Solid–liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem. 12(3), 455 (2002).Google Scholar
Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., and Wang, J.Y.: Microstructural characterization of layered ternary Ti2AlC. Acta Mater. 54(4), 1009 (2006).CrossRefGoogle Scholar
Wolf, U., Ernst, F., Muschik, T., Finnis, M.W., and Fischmeister, H.F.: The influence of grain boundary inclination on the structure and energy of ∑ = 3 grain boundaries in copper. Philos. Mag. A 66(6), 991 (1992).CrossRefGoogle Scholar
Liu, L., Wang, J., Gong, S.K., and Mao, S.X.: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106(17), 175504 (2011).CrossRefGoogle ScholarPubMed
Wang, J., Anderoglu, O., Hirth, J.P., Misra, A., and Zhang, X.: Dislocation structures of sigma 3{112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95(2), 021908 (2009).Google Scholar
Bezares, J., Jiao, S., Liu, Y., Bufford, D., Lu, L., Zhang, X., Kulkarni, Y., and Asaro, R.J.: Indentation of nanotwinned fcc metals: implications for nanotwin stability. Acta Mater. 60(11), 4623 (2012).CrossRefGoogle Scholar
Markiv, V.Y., Burnashova, V.V., and Riabov, V.R.: A study of the Ti–Fe–Al, Ti–Ni–Al, and Ti–Cu–Al systems. Metallofizika 46(46), 103 (1973).Google Scholar
Zeng, K., Schmid-Fetzer, R., Huneau, B., Rogl, P., and Bauer, J.: The ternary system Al–Ni–Ti part II: thermodynamic assessment and experimental investigation of polythermal phase equilibria. Intermetallics 7(12), 1347 (1999).Google Scholar
Buban, J.P., Matsunaga, K., Chen, J., Shibata, N., Ching, W.Y., Yamamoto, T., and Ikuhara, Y.: Grain boundary strengthening in alumina by rare earth impurities. Science 311(5758), 212 (2006).CrossRefGoogle ScholarPubMed
Wang, Z., Saito, M., McKenna, K.P., Gu, L., Tsukimoto, S., Shluger, A.L., and Ikuhara, Y.: Atom-resolved imaging of ordered defect superstructures at individual grain boundaries. Nature 479(7373), 380 (2011).Google Scholar
Chiang, Y.M., Henriksen, A.F., Kingery, W.D., and Finello, D.: Characterization of grain-boundary segregation in MgO. J. Am. Ceram. Soc. 64(7), 385 (1981).Google Scholar
Kerans, R.J., Mazdiyasni, K.S., Ruh, R., and Lipsitt, H.A.: Solubility of metals in substoichiometric TiC1-x . J. Am. Ceram. Soc. 67(1), 34 (1984). Google Scholar
Shibata, N., Pennycook, S.J., Gosnell, T.R., Painter, G.S., Shelton, W.A., and Becher, P.F.: Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428(6984), 730 (2004).Google Scholar
Varschavsky, A. and Donoso, E.: The kinetics of disperse order development in α-CuAl alloys. Metall. Trans. A 14(4), 875 (1983).Google Scholar
Hensel, F.R. and Larsen, E.I.: Age-hardening copper–titanium alloys. Trans. Am. Inst. Min. Metall. Eng. 99, 55 (1932).Google Scholar
Itkin, M.V. and Shmatko, O.A.: On the temperature-concentration bound of cellular decomposition in Cu–Ti system. Phys. Met. 4(4), 806 (1982).Google Scholar
Okamoto, H.: Cu–Ti (copper–titanium). J. Phase Equilib. 23(6), 549 (2002).CrossRefGoogle Scholar
Nie, J.F., Zhu, Y.M., Liu, J.Z., and Fang, X.Y.: Periodic segregation of solute atoms in fully coherent twin boundaries. Science 340(6135), 957 (2013).CrossRefGoogle ScholarPubMed
Zhang, H., Wang, X.H., Ma, Y.H., Sun, L.C., Zheng, L.Y., and Zhou, Y.C.: Crystal structure determination of nanolaminated Ti5Al2C3 by combined techniques of XRPD, TEM and ab initio calculations. J. Adv. Ceram. 1(4), 268 (2012).Google Scholar