Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T03:11:03.845Z Has data issue: false hasContentIssue false

Advances in amorphous silicon photovoltaic technology

Published online by Cambridge University Press:  31 January 2011

D. E. Carlson
Affiliation:
Solarex, a Business Unit of Amoco/Enron Solar, 826 Newtown-Yardley Road, Newtown, Pennsylvania 18940
K. Rajan
Affiliation:
Solarex, a Business Unit of Amoco/Enron Solar, 826 Newtown-Yardley Road, Newtown, Pennsylvania 18940
R. R. Arya
Affiliation:
Solarex, a Business Unit of Amoco/Enron Solar, 826 Newtown-Yardley Road, Newtown, Pennsylvania 18940
F. Willing
Affiliation:
Solarex, a Business Unit of Amoco/Enron Solar, 826 Newtown-Yardley Road, Newtown, Pennsylvania 18940
L. Yang
Affiliation:
Solarex, a Business Unit of Amoco/Enron Solar, 826 Newtown-Yardley Road, Newtown, Pennsylvania 18940
Get access

Abstract

With the advent of new multijunction thin film solar cells, amorphous silicon photovoltaic technology is undergoing a commercial revival with about 30 megawatts of annual capacity coming on-line in the next year. These new a−Si multijunction modules should exhibit stabilized conversion efficiencies on the order of 8%, and efficiencies over 10% may be obtained in the next several years. The improved performance results from the development of amorphous and microcrystalline silicon alloy films with improved optoelectronic properties and from the development of more efficient device structures. Moreover, the manufacturing costs for these multijunction modules using the new large-scale plants should be on the order of $1 per peak watt. These modules may find widespread use in solar farms, photovoltaic roofing, as well as in traditional remote applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Carlson, D. E., U. S. Patent No. 4,064,521 (1977).Google Scholar
2.Carlson, D. E. and Wronski, C. R., Appl. Phys. Lett. 28, 671 (1976).CrossRefGoogle Scholar
3.Arya, R. R., Oswald, R. S., Li, Y. M., Maley, N., Jansen, K., Yang, L., Chen, L. F., Willing, F., Bennett, M. S., Morris, J., and Carlson, D. E., Proc. 24th IEEE Photovoltaic Specialists Conference (1994), p. 394.Google Scholar
4.Yang, J., Banerjee, A., Glatfelter, T., Hoffman, K., Xu, X., and Guha, S., Proc. 24th IEEE Photovoltaic Specialists Conference (1994), p. 380.Google Scholar
5.Carlson, D. E., Arya, R. R., Bennett, M., Chen, L-F., Jansen, K., Li, Y-M., Newton, J., Rajan, K., Romero, R., Talenti, D., Twesme, E., Willing, F., and Yang, L., Proc. 25th IEEE Photovoltaic Specialists Conference (1996).Google Scholar
6.Kane, J., U. S. Patent No. 4,532,537 (1985).Google Scholar
7.Carlson, D. E. and Williams, B. F., U. S. Patent No. 4,442,310 (1984).Google Scholar
8.Arya, R. R., Proc. of the 7th Sunshine Workshop, Tokyo, Japan (1983).Google Scholar
9.Bennett, M., Newton, J., and Poplawski, C., Proc 23rd IEEE Photovoltaic Specialists Conference (1993), p. 867.Google Scholar
10.Mahan, A. H. and Vanecek, M., AIP Conf. Proc. 234 (1991), p. 195.Google Scholar
11.Williamson, D. L., Mahan, A. H., Nelson, B. P., and Crandall, R. S., J. Non-Cryst. Solids 114, 226 (1989).Google Scholar
12.Knights, J. C., Lujan, R. A., Rosenblum, M. P., Street, R. A., Biegelsen, D. K., and Reimer, J., Appl. Phys. Lett. 38, 331 (1981).Google Scholar
13.Tiedje, T., Cebulka, J. M., Morel, D. L., and Abeles, B., Phys. Rev. Lett. 46, 1425 (1981).Google Scholar
14.Li, Y-M., Jackson, F., and Arya, R. R., Proc. 23rd IEEE Photovoltaic Specialists Conference (1993), p. 850.Google Scholar
15.Kausche, H., Moller, M., Plattner, R., Bednorz, K., Kruhler, W., and Peters, W., Proc. 8th European Community Photovoltaic Solar Energy Conference (1985).Google Scholar
16.von Roedern, B., Ley, L., Cardona, M., and Smith, F. W., Philos. Mag. B 40, 433 (1979).CrossRefGoogle Scholar
17.Della Sala, D., Reita, C., Conte, G., Galluzzi, F., and Grillo, G., J. Appl. Phys. 67, 814 (1990).Google Scholar
18.Yang, J., Xu, X., Banerjee, A., and Guha, S., Proc. 25th IEEE Photovoltaic Specialists Conference (1996).Google Scholar
19.Carlson, D. E. and Arya, R. R., Optoelectronics 5, 157 (1990).Google Scholar
20.Asano, A., Appl. Phys. Lett. 56, 533 (1990).CrossRefGoogle Scholar
21.Shira, H., Hanna, J., and Shimizu, I., Jpn. J. Appl. Phys. 30, L881 (1991).CrossRefGoogle Scholar
22.Fischer, D., Dubail, S., Selvan, J., Vaucher, N., Platz, R., Hof, C., Kroll, U., Meier, J., Torres, P., Keppner, H., Wyrsch, N., Goetz, M., Shah, A., and Ufert, K., Proc. 25th IEEE Photovoltaic Specialists Conference (1996).Google Scholar
23.Carlson, D. E. and Magee, C. W., Appl. Phys. Lett. 33, 81 (1978).Google Scholar
24.Beyer, W., Herion, J., and Wagner, H., J. Non-Cryst. Solids 114, 217 (1989).Google Scholar
25.Santos, P. V., Johnson, N. M., and Street, R. A., Phys. Rev. Lett. 67, 2686 (1991).Google Scholar
26.Carlson, D. E. and Rajan, K., Appl. Phys. Lett. 68, 28 (1996).Google Scholar
27.Carlson, D. E. and Rajan, K., Appl. Phys. Lett. 69, 1447 (1996).Google Scholar
28.Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E., and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
29.Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
30.Staebler, D. L., Crandall, R. S., and Williams, R., Appl. Phys. Lett. 39, 733 (1981).Google Scholar
31.Hanak, J. J. and Korsun, V., Proc. 16th IEEE Photovoltaic Specialists Conference (1993), p. 1381.Google Scholar
32.Bennett, M. S., Rajan, K., and Kritikson, K., Proc. 23rd IEEE Photovoltaic Specialists Conference (1993), p. 845.Google Scholar
33.Carlson, D. E., Arya, R. R., Bennett, M., Chen, L-F., Jansen, K., Li, Y-M., Maley, N., Morris, J., Newton, J., Oswald, R. S., Rajan, K., Vezzetti, D., Willing, F., and Yang, L., AIP Conf. Proc. 353 (1996), p. 304.Google Scholar
34.Bennett, M. S., Catalano, A., Rajan, K., and Arya, R. R., Proc. 21st IEEE Photovoltaic Specialists Conference (1990), p. 1653.Google Scholar
35.Fukae, K., Takehara, N., Tamechika, N., Lim, C. C., Kajita, I., and Kondo, E., Proc. 25th IEEE Photovoltaic Specialists Conference (1996).Google Scholar
36.Adler, D., J. de Phys. 42, suppl. 10, C43 (1981).Google Scholar
37.Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 38, 456 (1981).CrossRefGoogle Scholar
38.Carlson, D., Appl. Phys. A 41, 305 (1986).Google Scholar
39.Kroll, U., Meier, J., Keppner, H., and Shah, A., J. Vac. Sci. Technol. A 13, 2742 (1995).Google Scholar
40.Carlson, D. E. and Catalano, A., Optoelectronics 4 185 (1989).Google Scholar
41.Kuwano, Y. and Ohnishi, M., J. de Phys. 42, suppl. 10, C41155 (1981).Google Scholar
42.Sabisky, E., Kiss, Z., Ellis, F., Eser, E., Gau, S., Kampas, F., VanDine, J., Weakliem, H., and Varvar, T., Proc. 9th European Community Photovoltaic Solar Energy Conference (1989), p. 27.Google Scholar
43.Times, N. Y., June 5, 1996, p. D1.Google Scholar
44.PV News, Vol. 14, No. 11, Nov. 1995, p. 6.Google Scholar