Skip to main content Accessibility help
×
Home

X-ray absorption fine structure study on the formation of Cu–Br bonds in (Br + Cu) ion implanted silica glass

Published online by Cambridge University Press:  06 January 2012

Kohei Fukumi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Akiyoshi Chayahara
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Atsushi Kinomura
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Hiroyuki Kageyama
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Kohei Kadono
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Naoyuki Kitamura
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Junji Nishii
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Yuji Horino
Affiliation:
National Institute of Advanced Industrial Science and Technology, Kansai Center 1–8-31, Midorigaoka, Ikeda, Osaka, 563–8577 Japan
Get access

Abstract

The valence and coordination structure of implanted Cu and Br ions were investigated by x-ray absorption fine structure spectroscopy in (2.4 MeV 6 × 1016 Br2+ ions cm−2+ 2 MeV 6 × 1016 Cu+ ions cm−2)-implanted silica glass. It was found that the implanted Cu and Br atoms were coordinated by oxygen atoms and silicon atoms, respectively, in as-implanted glass. After heating at 600 °C, at least two-thirds of the Cu atoms were coordinated by Br atoms without the formation of crystals. The γCuBr crystal was formed after heating to 1100 °C. It was deduced that the coordination structure of Cu and Br atoms depends on defects as well as thermochemical stability and mass transport processes.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

Weeks, R.A., in Materials Science and Technology, A Comprehensive Treatment, Vol. 9, Glasses and Amorphous Materials, edited by Zarzycki, J. (VCH, Weinheim, Germany, 1991), Chap. 6, pp. 331373.Google Scholar
Arnold, G.W. and Mazzoldi, P., in Beam Modification of Materials 2, Ion Beam Modification of Insulators, edited by Mazzoldi, P. and Arnold, G.W., (Elsevier, Amsterdam, The Netherlands, 1987), Chap. 5, pp. 195222.Google Scholar
Fukumi, K., Chayahara, A., Makihara, M., Fujii, K., Hayakawa, J., and Satou, M., J. Am. Ceram. Soc. 77, 3019 (1994).Google Scholar
Hosono, H., Jpn. J. Appl. Phys. 32, Part 1, 3892 (1993).CrossRefGoogle Scholar
Fukumi, K., Chayahara, A., Hayakawa, J., and Satou, M., in Surface Chemistry and Beam-Solid Interactions, edited by Atwater, H.A., Houle, F.A., and Lowndes, D. (Mater. Res. Soc. Symp. Proc., 201, Pittsburgh, PA, 1991), pp. 241246.Google Scholar
Magruder, R.H. III, Weeks, R.A., Zuhr, R.A., and Whichard, G., J. Non-Cryst. Solids 129, 46 (1991).CrossRefGoogle Scholar
Fukumi, K., Chayahara, A., Kadono, K., Kageyama, H., Akai, T., Kitamura, N., Makihara, M., Fujii, K., and Hayakawa, J., J. Non-Cryst. Solids 238, 143 (1998).CrossRefGoogle Scholar
Fukumi, K., Chayahara, A., Kitamura, N., Akai, T., Hayakawa, J., Fujii, K., and Satou, M., J. Non-Cryst. Solids 178, 155 (1994).CrossRefGoogle Scholar
Fukumi, K., Chayahara, A., Kageyama, H., Kadono, K., Akai, T., Kitamura, N., Mizoguchi, H., Horino, Y., Makihara, M., Fujii, K., and Hayakawa, J., J. Non-Cryst. Solids, 259, 93 (1999).CrossRefGoogle Scholar
Pham, M.T., Möller, D., Hüller, J., and Albrecht, J., J. Appl. Phys. 79, 3915 (1996).CrossRefGoogle Scholar
Meldrun, A., White, C.W., Boatner, L.A., Anderson, I.M., Zuhr, R.A., Sonder, E., Budai, J.D., Henderson, D.O., Nucl. Instrum. Methods Phys. Res. B 148, 957 (1999).CrossRefGoogle Scholar
Nakao, S., Wang, S.X., Wang, L.M., Ikeyama, M., Miyagawa, Y., Miyagawa, S., Nucl. Instrum. Methods B 175/177, 202 (2001).CrossRefGoogle Scholar
White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Zuhr, R.A., Hembree, D.M., Jr., Henderson, D.O., Ueda, A., Tung, Y.S., Mu, R., and Magruder, R.H., J. Appl. Phys. 79, 1876 (1996).CrossRefGoogle Scholar
Parent, C., Boutinaud, P., LeFlem, G., Moine, B., Pedrini, C., Garcia, D., Faucher, M., Opt. Mater. 4, 107 (1994).CrossRefGoogle Scholar
Gan, F-X., Optical and Spectroscopic Properties of Glass (Springer, Berlin, Germany, 1992), Chap. 7, pp. 148203.Google Scholar
Fukumi, K., Chayahara, A., Ohora, K., Kitamura, N., Horino, Y., Fujii, K., Makihara, M., Hayakawa, J., and Ohno, N., Nucl. Instrum. Methods Phys. Res. B 149, 77 (1999).CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Peramon, New York, 1985)Google Scholar
Teo, B.K., EXAFS: Basic Principles and Data Analysis (Springer, Berlin, Germany, 1986), Chap. 6, pp. 114157.CrossRefGoogle Scholar
Hastings, J.B., in EXAFS Spectroscopy Techniques and Applications, edited by Teo, B.K. and Joy, D.C. (Plenum, New York, 1981), Chap. 12, pp. 171180.CrossRefGoogle Scholar
Rehr, J.J., Leon, J. Mustre de, Zabinsky, S.I., and Albers, R.C., J. Am. Chem. Soc. 113, 5135 (1991).CrossRefGoogle Scholar
Yokoyama, T., Yonamoto, Y., and Ohta, T., J. Phys. Soc. Jpn. 65, 3901 (1996).CrossRefGoogle Scholar
Brese, N.E. and M. O’Keeffe, Acta Crystallogr. B 47, 192 (1991).CrossRefGoogle Scholar
Appleton, B.R., in Ion Implantation and Beam Processing, edited by Willams, J.S. and Poate, J.M. (Academic, Sydney, Australia, 1984), Chap. 7, pp. 189259.CrossRefGoogle Scholar
CRC Handbook of Chemistry and Physics, 77th ed., edited by Lide, D.R. (CRC, Boca Raton, FL, 1996), Chap. 9, pp. 9-159-41, Translated from Kagaku Binran, Kisohen, 3rd ed., edited by the Chemical Society of Japan (Maruzen, Tokyo, 1984), Vol. II, Chap. 15.1, pp. 649–661.Google Scholar
Mozzi, R.L. and Warren, B.E., J. Appl. Crystallogr. 2, 164 (1969).CrossRefGoogle Scholar
Bührer, W. and Hälg, W., Electrochim. Acta. 22, 701 (1977).CrossRefGoogle Scholar
Oeckler, O. and Simon, S., Kristallogr, Z.. New Cryst. Struct. 215, 13 (2000).Google Scholar
Mohri, F., Acta. Crystallogr. B 56, 626 (2000).CrossRefGoogle Scholar
Kau, L-S., Spira-Solomon, D.J., Penner-Hahn, J.E., Hodgson, K.O., and Solomon, E.I., J. Am. Chem. Soc. 109, 6433 (1987).CrossRefGoogle Scholar
Grunes, L.A., Phys. Rev. B 27, 2111 (1983).CrossRefGoogle Scholar
Bianconi, A., in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, edited by Koningsberger, D.C. and Prins, R. (Wiley, New York, 1988), Chap. 11, pp. 573662Google Scholar
Minicucci, M. and Di, A. Cicco, Phys. Rev. B 56, 11456 (1997).CrossRefGoogle Scholar
Endo, O., Kiguchi, M., Yokoyama, T., Ito, M., and Ohta, T., J. Electroanal. Chem. 473, 19 (1999).CrossRefGoogle Scholar
Yokoyama, T. and Ohota, T., J. Phys. Soc. Jpn. 65, 3909 (1996).CrossRefGoogle Scholar
Stern, E.A., Sayers, D.E., and Lytle, F.W., Phys. Rev. B 11, 4836 (1975).CrossRefGoogle Scholar
Teo, B.K. and Lee, P.A., J. Am. Chem. Soc. 101, 2815 (1979).CrossRefGoogle Scholar
Filipponi, A., Ottaviano, L., Passacantando, M., Picozzi, P., and Santucci, S., Phys. Rev. E 48, 4575 (1993).CrossRefGoogle Scholar
Schumb, W.C. and Klein, C.H., J. Am. Chem. Soc. 59, 261 (1937).CrossRefGoogle Scholar
Wyckoff, R.W.G., Crystal Structures, 2nd ed. (Wiley, New York, 1963), Vol. 1, Chap. IV, f1., pp. 331332.Google Scholar
Åsbrink, S. and Norrby, L-J., Acta Crystallogr. B 26, 8 (1970).CrossRefGoogle Scholar
Gmelins Handbuch der Anorganischen Chemie, 8th ed., edited by Gmelin-Institut für Anorganische Chemie und Grenzgebiete (Verlag Chemie, Weinheim, Germany, 1959), Silicium, System No. 15, Part B, pp. 543545.Google Scholar
Barin, I., Themochemical Data of Pure Substances, 3rd ed. (VCH, Weinheim, Germany, 1995), Vol.I&II.CrossRefGoogle Scholar
Gmelins Handbuch der Anorganishen Chemie, 8th ed., edited by Gmelin-Institut für Anorganische Chemie und Grenzgebiete (Verlag Chemie, Weinheim, Germany, 1959), Vol. 15B, Silicium, pp. 715724.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-m9qpn Total loading time: 0.316 Render date: 2021-01-21T06:41:52.145Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray absorption fine structure study on the formation of Cu–Br bonds in (Br + Cu) ion implanted silica glass
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

X-ray absorption fine structure study on the formation of Cu–Br bonds in (Br + Cu) ion implanted silica glass
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

X-ray absorption fine structure study on the formation of Cu–Br bonds in (Br + Cu) ion implanted silica glass
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *