Hostname: page-component-5d59c44645-k78ct Total loading time: 0 Render date: 2024-02-26T02:41:06.266Z Has data issue: false hasContentIssue false

X-ray Absorption Fine Structure Study on Coordination State of Implanted Gold Ions in Silica Glass

Published online by Cambridge University Press:  31 January 2011

Kohei Fukumi
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Hiroyuki Kageyama
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Kohei Kadono
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Akiyoshi Chayahara
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Nagao Kamijo
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Masaki Makihara
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Kanenaga Fujii
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Junji Hayakawa
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Mamoru Satou
Affiliation:
Osaka National Research Institute, AIST, 1–8–31, Midorigaoka, Ikeda, Osaka, 563-8577 Japan
Get access

Abstract

Coordination state of gold atoms implanted in silica glass to an energy of 1.5 MeV and a dose of 1 × 1017 ions/cm2 has been studied by x-ray absorption fine structure spectroscopy. It was found that most of the gold atoms form gold clusters in which the nearest neighboring Au–Au interatomic distance is shorter by 0.05 °A than that in bulk gold. The contraction of Au–Au interatomic distance of gold clusters in silica glass is less than that reported in the previous studies on gold clusters within the other substrates. Gold atoms are coordinated by about four gold atoms in average. In addition, it was found that Au–O bonds are formed at the gold clusters/silica glass interface. It was deduced that the formation of Au–O bond at the gold clusters/silica glass interface depresses the contraction of Au–Au interatomic distance.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Borrellli, N. F. and Hall, D. W., in Optical Properties of Glass, edited by Uhlmann, D. R. and Kreidl, N. J. (Am. Ceram. Soc., Westerville, OH, 1991), p. 87.Google Scholar
2.Masumoto, Y., Yamazaki, M., and Sugawara, H., Appl. Phys. Lett. 53, 1527 (1988).Google Scholar
3.Hache, F., Ricard, D., Flytzanis, C., and Kreibig, U., Appl. Phys. A 47, 347 (1988).Google Scholar
4.Harada, J. and Ohshima, K., Surf. Sci. 106, 51 (1981).Google Scholar
5.Balerna, A., Bernieri, E., Picozzi, P., Reale, A., Santucci, S., Burattini, E., and Mobilio, S., Phys. Rev. B 31, 5058 (1985).Google Scholar
6.Balerna, A. and Mobilio, S., Phys. Rev. B 34, 2293 (1986).Google Scholar
7.Apai, G., Hamilton, J. F., Stohr, J., and Thompson, A., Phys. Rev. Lett. 43, 165 (1979).Google Scholar
8.Montano, P. A., Shenoy, G. K., Alp, E. E., Schulze, W., and Urban, J., Phys. Rev. Lett. 56, 2076 (1986).Google Scholar
9.Purdum, H., Montano, P. A., Shenoy, G. K., and Morrison, T., Phys. Rev. 26, 4412 (1982).Google Scholar
10.D'Agostino, G., Pinto, A., and Mobilio, S., Phys. Rev. B 48, 14 447 (1993).Google Scholar
11.Marcus, M. A., Andrews, M. P., Zegenhagen, J., Bommannavar, A. S., and Montano, P., Phys. Rev. B 42, 3312 (1990).Google Scholar
12.Lagarde, P., Murata, T., Vlaic, G., Freund, E., Dexpert, H., and Bournonville, J. P., J. Catal. 84, 333 (1983).Google Scholar
13.Via, G. H., Sinfelt, J. H., and Lytle, F. W., J. Chem. Phys. 71, 690 (1979).Google Scholar
14.Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Hayakawa, J., and Satou, M., Jpn. J. Appl. Phys. 30, L742 (1991).Google Scholar
15.Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Fujii, K., Hayakawa, J., and Satou, M., J. Appl. Phys. 75, 3075 (1994).Google Scholar
16.Fukumi, K., Chayahara, A., Makihara, M., Fujii, K., Hayakawa, J., and Satou, M., Appl. Phys. Lett. 64, 3410 (1994).Google Scholar
17.Fukumi, K., Kageyama, H., Kadono, K., Chayahara, A., Kamijo, N., Makihara, M., Fujii, K., Hayakawa, J., and Satou, M., J. Mater. Res. 10, 2418 (1995).Google Scholar
18.Hayes, T. M. and Boyce, J. B., in Solid State Physics, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic Press, New York, 1982), Vol. 37, p. 173.Google Scholar
19.Theisen, R. and Vollath, D., in Tables of X-ray Mass Attenuation Coefficients (Verlang Stahleisen mbH, Düsseldorf, 1967).Google Scholar
20.Tröger, L., Arvanitis, D., Baberschke, K., Michaelis, H., Grimm, U., and Zschech, E., Phys. Rev. B 46, 3283 (1992).Google Scholar
21.Maeda, H., J. Phys. Soc. Jpn. 56, 2277 (1987).Google Scholar
22.McKale, A. D., Veal, B. W., Paulikas, A. P., Chan, S-K., and Knapp, G. S., J. Am. Chem. Soc. 251, 3763 (1988).Google Scholar
23.Jones, P. G., Rumpel, H., Schwarzmann, E., Sheldrick, G. M., and Paulus, H., Acta Crystallogr. B35, 1435 (1979).Google Scholar
24.Wasel-Hielen, H-D. and Hoppe, R., Z. Kristallstruktur 375, 43 (1970).Google Scholar
25.Dörrscheidt, W., Niess, N., and Schäfer, H., Z. Naturforsch. 31b, 890 (1976).Google Scholar
26.Döring, W. and Schuster, H-U., Z. Naturforsch. 35b, 1482 (1980).Google Scholar
27.Döring, W., Seelentag, W., Buchholz, W., and Schuster, H-U., Z. Naturforsch. 34b, 1715 (1979).Google Scholar
28.Greaves, G. N., Durham, P. J., Diakun, G., and Quinn, P., Nature (London) 294, 140 (1981).Google Scholar
29.Bianconi, A., in X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, edited by Konigsberger, D. C. and Prins, R. (John Wiley and Sons, New York, 1988), p. 573.Google Scholar
30.Shannon, R. D., Acta Crystallogr. A32, 751 (1976).Google Scholar
31.Feldmann, C. and Jansen, M., Angew. Chem. Int. Ed. Engl. 32, 1049 (1993).Google Scholar
32.Shaw III, C. Frank, Schaeffer, N. A., Elder, R. C., Eidsness, M. K., Trosster, J. M., and Calis, Gijs. H. M., J. Am. Chem. Soc. 106, 3511 (1984).Google Scholar