Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-gpwtm Total loading time: 12.26 Render date: 2021-03-09T04:30:40.500Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Vanadium oxide nanowires for Li-ion batteries

Published online by Cambridge University Press:  13 July 2011

Liqiang Mai
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China; and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
Xu Xu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
Lin Xu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
Chunhua Han
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
Yanzhu Luo
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
Corresponding
E-mail address:
Get access

Abstract

Vanadium oxide nanowires have gained increasing interest as the electrode materials for Li-ion batteries. This article presents the recent developments of vanadium oxide nanowire materials and devices in Li-ion batteries. First, we will describe synthesis and construction of vanadium oxide nanowires. Then, we mainly focus on the electrochemical performances of vanadium oxide nanowires, such as VO2, V2O5, hydrated vanadium oxides, LiV3O8, silver vanadium oxides, etc. Moreover, design and in situ characterization of the single nanowire electrochemical device are also discussed. The challenges and opportunities of vanadium oxide nanowire electrode materials will be discussed as a conclusion to push the fundamental and practical limitations of this kind of nanowire materials for Li-ion batteries.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

1.Goodenough, J.B.: Cathode materials: A personal perspective. J. Power Sources 174, 996 (2007).CrossRefGoogle Scholar
2.Ma, M., Chernova, N.A., Toby, B.H., Zavalij, P.Y., and Whittingham, M.S.: Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2. J. Power Sources 165, 517 (2007).CrossRefGoogle Scholar
3.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).CrossRefGoogle Scholar
4.Enjalbert, R. and Galy, J.: A refinement of the structure of V2O5. Acta Crystallogr. C 42, 1469 (1986).CrossRefGoogle Scholar
5.Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).CrossRefGoogle ScholarPubMed
6.Ganesan, M.: Studies on the effect of titanium addition on LiCoO2. Ionics 15, 609 (2009).CrossRefGoogle Scholar
7.Yang, P. and Lieber, C.M.: Nanorod-superconductor composites: A pathway to high critical current density materials. Science 273, 1836 (1996).CrossRefGoogle Scholar
8.Kim, D.K., Muralidharan, P., Lee, H.W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H.L., Huggins, R.A., and Cui, Y.: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008).CrossRefGoogle ScholarPubMed
9.Lee, H.W., Muralidharan, P., Ruffo, R., Mari, C.M., Cui, Y., and Kim, D.K.: Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 10, 3852 (2010).CrossRefGoogle ScholarPubMed
10.Hosono, E., Matsuda, H., Saito, T., Kudo, T., Ichihara, M., Honma, I., and Zhou, H.S.: Synthesis of single crystalline Li0.44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of Li ion battery. J. Power Sources 195, 7098 (2010).CrossRefGoogle Scholar
11.Whittingham, M.S.: The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123, 315 (1976).CrossRefGoogle Scholar
12.Chernova, N.A., Roppolo, M., Dillonb, A.C., and Whittingham, M.S.: Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 10, 2526 (2009).CrossRefGoogle Scholar
13.Wang, Y. and Cao, G.Z.: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787 (2006).CrossRefGoogle Scholar
14.Wu, C.Z. and Xie, Y.: Promising vanadium oxide and hydroxide nanostructures: From energy storage to energy saving. Energy Environ. Sci. 3, 1191 (2010).CrossRefGoogle Scholar
15.Zhai, T.Y., Liu, H.M., Li, H.Q., Fang, X.S., Liao, M.Y., Li, L., Zhou, H.S., Koide, Y., Bando, Y., and Golberg, D.: Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547 (2010).CrossRefGoogle ScholarPubMed
16.Kim, M.H., Lee, B., Lee, S., Larson, C., Baik, J.M., Yavuz, C.T., Seifert, S., Vajda, S., Winans, R.E., Moskovits, M., Stucky, G.D., and Wodtke, A.M.: Growth of metal oxide nanowires from supercooled liquid nanodroplets. Nano Lett. 9, 4138 (2009).CrossRefGoogle ScholarPubMed
17.Takahashi, K., Limmer, S.J., Wang, Y., and Cao, G.Z.: Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition. J. Phys. Chem. B 108, 9795 (2004).CrossRefGoogle Scholar
18.Cheng, Y., Wong, T.L., Ho, K.M., and Wang, N.: The structure and growth mechanism of VO2 nanowires. J. Cryst. Growth 311, 1571 (2009).CrossRefGoogle Scholar
19.Velazquez, J.M. and Banerjee, S.: Catalytic growth of single-crystalline V2O5 nanowire arrays. Small 5, 1025 (2009).CrossRefGoogle ScholarPubMed
20.Wu, M.C. and Lee, C.S.: Field emission of vertically aligned V2O5 nanowires on an ITO surface prepared with gaseous transport. J. Solid State Electrochem. 182, 2285 (2009).CrossRefGoogle Scholar
21.Pan, A.Q., Zhang, J.G., Nie, Z.M., Cao, G.Z., Arey, B.W., Li, G.S., Liang, S.Q., and Liu, J.: Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 20, 9193 (2010).CrossRefGoogle Scholar
22.Glushenkov, A.M., Stukachev, V.I., Hassan, M.F., Kuvshinov, G.G., Liu, H.K., and Chen, Y.: A novel approach for real mass transformation from V2O5 particles to nanorods. Cryst. Growth Des. 8, 3661 (2008).CrossRefGoogle Scholar
23.Wang, Y., Zhang, H.J., Lim, W.X., Lin, J.Y., and Wong, C.C.: Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 21, 2362 (2011).CrossRefGoogle Scholar
24.Ban, C. and Whittingham, M.S.: Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydrothermal methods. Solid State Ionics 179, 1721 (2008).CrossRefGoogle Scholar
25.Ban, C., Chernova, N.A., and Whittingham, M.S.: Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 11, 522 (2009).CrossRefGoogle Scholar
26.Viswanathamurthi, P., Bhattarai, N., Kim, H.K., and Lee, D.R.: Vanadium pentoxide nanofibers by electrospinning. Scr. Mater. 49, 577 (2003).CrossRefGoogle Scholar
27.Yu, D.M., Chen, C.G., Xie, S.H., Liu, Y.Y., Park, K., Zhou, X.Y., Zhang, Q.F., Li, J.Y., and Cao, G.Z.: Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 4, 858 (2011).CrossRefGoogle Scholar
28.Mai, L.Q., Xu, L., Han, C.H., Xu, X., Luo, Y.Z., Zhao, S.Y., and Zhao, Y.L.: Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for Lithium ion batteries. Nano Lett. 10, 4750 (2010).CrossRefGoogle ScholarPubMed
29.Whang, D., Jin, S., Wu, Y., and Lieber, C.M.: Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255 (2003).CrossRefGoogle Scholar
30.Whang, D., Jin, S., and Lieber, C.M.: Nanolithography using hierarchically assembled nanowire masks. Nano Lett. 3, 951 (2003).CrossRefGoogle Scholar
31.Mai, L.Q., Gu, Y.H., Han, C.H., Hu, B., Chen, W., Zhang, P.C., Xu, L., Guo, W.L., and Dai, Y.: Orientated Langmuir-Blodgett assembly of VO2 nanowires. Nano. Lett. 9, 826 (2009).CrossRefGoogle Scholar
32.Mai, L.Q., Chen, W., Xu, Q., Peng, J.F., and Zhu, Q.Y.: Low-cost synthesis of novel vanadium dioxide nanorods. Int. J. Nanosci. 3, 225 (2004).CrossRefGoogle Scholar
33.Wei, M.D., Sugihara, H., Honma, I., Ichihara, M., and Zhou, H.S.: A new metastable phase of crystallized V2O4·0.25 H2O nanowires: Synthesis and electrochemical measurements. Adv. Mater. 17, 2964 (2005).CrossRefGoogle Scholar
34.Galy, J.: Vanadium pentoxide and vanadium oxide bronzes—Structural chemistry of single (S) and double (D) layer MxV2O5 phases. J. Solid State Chem. 100, 229 (1992).CrossRefGoogle Scholar
35.Chen, Z.J., Gao, S.K., Jiang, L.L., Wei, M.D., and Wei, K.M.: Crystalline VO2 (B) nanorods with a rectangular cross-section. Mater. Chem. Phys. 121, 254 (2010).CrossRefGoogle Scholar
36.Zhou, F., Zhao, X.M., Xu, H., and Yuan, C.G.: Hydrothermal synthesis of metastable VO2 nanorods as cathode materials for lithium ion batteries. Chem. Lett. 11, 1280 (2006).CrossRefGoogle Scholar
37.Armstrong, G., Canales, J., Armstrong, A.R., and Bruce, P.G.: The synthesis and lithium intercalation electrochemistry of VO2 (B) ultra-thin nanowires. J. Power Sources 178, 723 (2008).CrossRefGoogle Scholar
38.Chen, W., Mai, L.Q., Qi, Y.Y., and Dai, Y.: One-dimensional nanomaterials of vanadium and molybdenum oxides. J. Phys. Chem. Solids. 67, 896 (2006).CrossRefGoogle Scholar
39.Chen, W., Xu, Q., Hu, Y., Mai, L., and Zhu, Q.: Effect of modification by poly (ethylene oxide)on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films. J. Mater. Chem. 12, 1926 (2002).CrossRefGoogle Scholar
40.Chou, S.L., Wang, J.Z., Sun, J.Z., Wexler, D., Forsyth, M., Liu, H.K., MacFarlane, D.R., and Dou, S.X.: High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater. 20, 7044 (2008).CrossRefGoogle Scholar
41.Chan, C.K., Peng, H., Twesten, R.D., Jarausch, K., Zhang, X.F., and Cui, Y.: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7, 490 (2007).CrossRefGoogle Scholar
42.Qiao, H., Zhu, X., Zheng, Z., Liu, L., and Zhang, L.: Synthesis of V3O7·H2O nanobelts as cathode materials for lithium–ion batteries. Electrochem. Commun. 8, 21 (2006).CrossRefGoogle Scholar
43.Gao, S.K., Chen, Z.J., Wei, M.D., Wei, K.M., and Zhou, H.S.: Single crystal nanobelts of V3O7·H2O: A lithium intercalation host with a large capacity. Electrochim. Acta 54, 1115 (2009).CrossRefGoogle Scholar
44.Zhang, Y.F., Liu, X.H., Xie, G.Y., Yu, L., Yi, S.P., Hu, M.J., and Huang, C.: Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V3O7·H2O single-crystal nanobelts. Mater. Sci. Eng., B 175, 164 (2010).CrossRefGoogle Scholar
45.Li, B.X., Xu, Y., Rong, G.X., Jing, M., and Xie, Y.: Vanadium pentoxide nanobelts and nanorolls: From controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17, 2560 (2006).CrossRefGoogle ScholarPubMed
46.Petkov, V., Trikalitis, P.N., Bozin, E.S., Billinge, S.J.L., Vogt, T., and Kanatzidis, M.G.: Structure of V2O5.nH2O xerogel solved by the atomic pair distribution function technique. J. Am. Chem. Soc. 124, 10157 (2002).CrossRefGoogle Scholar
47.Liu, H.M., Wang, Y.G., Wang, K.X., Wang, Y.R., and Zhou, H.S.: Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J. Power Sources 192, 668 (2009).CrossRefGoogle Scholar
48.Sakunthala, A., Reddy, M.V., Selvasekarapandian, S., Chowdari, B.V.R., and Christopher Selvin, P.: Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries. J. Phys. Chem. C 114, 8099 (2010).CrossRefGoogle Scholar
49.Semenenko, D.A., Itkis, D.M., Pomerantseva, E.A., Goodilin, E.A., Kulova, T.L., Skundin, A.M., and Tretyakov, Y.D.: LixV2O5 nanobelts for high capacity lithium-ion battery cathodes. Electrochem. Commun. 12, 1154 (2010).CrossRefGoogle Scholar
50.Liu, H.M., Wang, Y.G., Li, L., Wang, K.X., Hosono, E., and Zhou, H.S.: Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J. Mater. Chem. 19, 7885 (2009).CrossRefGoogle Scholar
51.Kenneth, J.T., Randolph, A.L., Marcus, J.P., Amy, C.M., and Esther, S.T.: Advanced lithium batteries for implantable medical devices: Mechanistic study of SVO cathode synthesis. J. Power Sources 119-121, 973 (2003).Google Scholar
52.Mao, C.J., Wu, X.C., and Zhu, J.J.: Large scale preparation of beta-AgVO3 nanowires using a novel sonochemical route. J. Nanosci. Nanotechnol. 8, 3203 (2008).CrossRefGoogle ScholarPubMed
53.Zhang, S.Y., Li, W.Y., Li, C.S., and Chen, J.: Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures. J. Phys. Chem. B 110, 24855 (2006).CrossRefGoogle ScholarPubMed
54.Gao, Q., Mai, L.Q., Xu, L., Gu, Y.H., Hu, B., Zhao, Y.L., and Han, J.H.: Construction and electrical transport properties of one-dimensional vanadium oxide nanomaterials. Sciencepaper Online 5, 323 (2010).Google Scholar
55.Cheng, K.C., Chen, F.R., and Kai, J.J.: V2O5 nanowires as a functional material for electrochromic device. Sol. Energy Mater. Sol. Cells 90, 1156 (2006).CrossRefGoogle Scholar
56.Xiong, C.R., Aliev, A.E., Gnade, B., and Balkus, K.J. Jr.: Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano 2, 293 (2008).CrossRefGoogle ScholarPubMed
57.Zhang, W., Yang, T., Li, W.J., Li, G.C., and Jiao, K.: Rapid and sensitive electrochemical sensing of DNA damage induced by V2O5 nanobelts/HCl/H2O2 system in natural dsDNA layer-by-layer films. Biosens. Bioelectron. 25, 2370 (2010).CrossRefGoogle ScholarPubMed
58.Zylbersztejn, A. and Mott, N.F.: Metal-insulator transition in vanadium dioxide. Phys. Rev. B 11, 4383 (1975).CrossRefGoogle Scholar
59.Xiao, D., Kim, K.W., and Zavada, J.M.: Electrically programmable photonic crystal slab based on the metal-insulator transition in VO2. J. Appl. Phys. 97, 106102 (2005).CrossRefGoogle Scholar
60.Xiao, D., Kim, K.W., Lazzi, G., and Zavada, J.M.: Tunable waveguiding in electrically programmable VO2-based photonic crystals. J. Appl. Phys. 99, 113106 (2006).CrossRefGoogle Scholar
61.Povey, I.M., Bardosova, M., Chalvet, F., Pemble, M.E., and Yates, H.M.: Atomic layer deposition for the fabrication of 3D photonic crystals structures: Growth of Al2O3 and VO2 photonic crystal systems. Surf. Coat. Tech. 201, 9345 (2007).CrossRefGoogle Scholar
62.Pevtsov, A.B., Kurdyukov, D.A., Golubev, V.G., Akimov, A.V., Meluchev, A.A., Sel’kin, A.V., Kaplyanskii, A.A., Yakovlev, D.R., and Bayer, M.: Ultrafast stop band kinetics in a three-dimensional opal- VO2 photonic crystal controlled by a photoinduced semiconductor-metal phase transition. Phys. Rev. B 75, 153101 (2007).CrossRefGoogle Scholar
63.Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V., and Wang, Z.L.: External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor. Adv. Mater. 22, 5134 (2010).CrossRefGoogle Scholar
64.Campbell, J.K., Sun, L., and Crooks, R.M.: Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121, 3779 (1999).CrossRefGoogle Scholar
65.Heller, I., Kong, J., Heering, H.A., Williams, K.A., Lemay, S.G., and Dekker, C.: Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5, 137 (2005).CrossRefGoogle ScholarPubMed
66.Yang, Y., Xie, C., Ruffo, R., Peng, H.L., Kim, D.K., and Cui, Y.: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).CrossRefGoogle ScholarPubMed
67.Yang, Y., Xie, C., Ruffo, R., Peng, H.L., Kim, D.K., and Cui, Y.: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).CrossRefGoogle ScholarPubMed
68.Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S., Hudak, N., Liu, X.H., Subramanian, A.K., Fan, H., Qi, L., Kushima, A., and Li, J.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).CrossRefGoogle Scholar
69.Wang, C.M., Xu, W., Liu, J., Choi, D., Arey, B.W., Saraf, L.V., Zhang, J., Yang, Z., Thevuthasan, S., Baer, D.R., and Salmon, N.: In-situ transmission electron microscopy and spectroscopy studies of interfaces in Li-ion batteries: Challenges and opportunities. J. Mater. Res. 25, 1541 (2010).CrossRefGoogle Scholar
70.Mai, L.Q., Dong, Y.J., Xu, L., and Han, C.H.: Single nanowire electrochemical devices. Nano Lett. 10, 4273 (2010).CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 65
Total number of PDF views: 209 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Vanadium oxide nanowires for Li-ion batteries
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Vanadium oxide nanowires for Li-ion batteries
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Vanadium oxide nanowires for Li-ion batteries
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *