Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T14:06:53.594Z Has data issue: false hasContentIssue false

Thermochemistry of nanoparticles on a substrate: Zinc oxide on amorphous silica

Published online by Cambridge University Press:  31 January 2011

Tatiana Y. Shvareva
Affiliation:
Peter A. Rock Thermochemistry Laboratory, University of California at Davis, Davis, California 95616
Sergey V. Ushakov
Affiliation:
Peter A. Rock Thermochemistry Laboratory, University of California at Davis, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Peter A. Rock Thermochemistry Laboratory, University of California at Davis, Davis, California 95616
Joseph A. Libera
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
Jeffrey W. Elam
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
*
a)Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

Crystalline samples of zinc oxide on a mesoporous amorphous silica substrate were prepared by 5 to 15 atomic layer deposition cycles with diethyl zinc and water at 150 °C. Samples were characterized by x-ray diffraction, thermogravimetry, and nitrogen adsorption–desorption isotherms. High-temperature oxide melt solution calorimetry and water adsorption calorimetry experiments were performed to measure surface enthalpy for crystalline ZnO particles supported on the substrate. The measured enthalpies 1.23 ± 0.35 and 2.07 ± 0.59 J/m2 for hydrous and anhydrous surfaces, respectively, are in agreement with previously reported measurements for unsupported ZnO nanoparticles. Feasibility of thermochemical characterization of complex system of atomic layer deposition (ALD) prepared particles on a substrate was demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, L., Vu, K., Navrotsky, A., Stevens, R., Woodfield, B.F.Boerio-Goates, J.: Calorimetric study: Surface energetics and the magnetic transition in nanocrystalline CoO. Chem. Mater. 16, 5394 2004Google Scholar
2Castro, R.H.R., Ushakov, S.V., Gengembre, L., Gouvea, D.Navrotsky, A.: Surface energy and thermodynamic stability of γ-alumina. Effect of dopants and water. Chem. Mater. 18, 1867 2006Google Scholar
3Pitcher, M.W., Ushakov, S.V., Navrotsky, A., Woodfield, B.F., Li, G., Boerio-Goates, J.Tissue, B.M.: Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160 2005Google Scholar
4Levchenko, A.A., Li, G., Boerio-Goates, J., Woodfield, B.F.Navrotsky, A.: TiO2 stability landscape: Polymorphism, surface energy, and bound water energetics. Chem. Mater. 18, 6324 2006Google Scholar
5Mazeina, L.Navrotsky, A.: Surface enthalpy of goethite. Clays Clay Miner. 53(2), 113 2005Google Scholar
6Mazeina, L., Deore, S.Navrotsky, A.: Energetics of bulk and nano-akaganeite, β-FeOOH: Enthalpy of formation, surface enthalpy, and enthalpy of water adsorption. Chem. Mater. 18, 1830 2006Google Scholar
7Majzlan, J., Mazeina, L.Navrotsky, A.: Enthalpy of water adsorption and surface enthalpy of lepidocrocite (γ-FeOOH). Geochim. Cosmochim. Acta 71, 615 2007Google Scholar
8Mazeina, L.Navrotsky, A.: Enthalpy of water adsorption and surface enthalpy of goethite (α-FeOOH) and hematite (α-Fe2O3). Chem. Mater. 19, 825 2007Google Scholar
9Zhang, P., Xu, F., Navrotsky, A., Lee, J-S., Kim, S.Liu, J.: Surface enthalpies of nanophase ZnO with different morphologies. Chem. Mater. 19, 5687 2007Google Scholar
10Ushakov, S.V., Navrotsky, A., Yang, Y., Stemmer, S., Kukli, K., Ritala, M., Leskelae, M.A., Fejes, P., Demkov, A., Wang, C., Nguyen, B-Y., Triyoso, D.Tobin, P.: Crystallization in hafnia- and zirconia-based systems. Phys. Status Solidi B 241, 2268 2004Google Scholar
11Libera, J.A., Elam, J.W.Pellin, M.J.: Conformal ZnO coatings on high surface area silica gel using atomic layer deposition. Thin Solid Films (in pressGoogle Scholar
12Thomas, J.M.Raja, R.: Catalytic significance of organometallic compounds immobilized on mesoporous silica: Economically and environmentally important examples. J. Organomettal. Chem. 689, 4110 2004Google Scholar
13Xiao, F-S.: Ordered mesoporous materials with improved stability and catalytic activity. Top. Catal. 35, 9 2005Google Scholar
14Clark, J.H., MacQuarrie, D.J.Tavener, S.J.: The application of modified mesoporous silicas in liquid phase catalysis. Dalton Trans. 36, 4297 2006Google Scholar
15Kurtz, M., Wilmer, H., Genger, T., Hinrichsen, O.Muhler, M.: Deactivation of supported copper catalysts for methanol synthesis. Catal. Lett. 86, 77 2003Google Scholar
16Polarz, S., Strunk, J., Ischenko, V., Van den Berg, M., Hinrichsen, O., Muhler, M.Driess, M.: On the role of oxygen defects in the catalytic performance of zinc oxide. Angew. Chem. Int. Ed. Engl. 45, 2965 2006Google Scholar
17Tabatabaei, J., Sakakini, B.H.Waugh, K.C.: On the mechanism of methanol synthesis and the water-gas shift reaction on ZnO. Catal. Lett. 110, 77 2006CrossRefGoogle Scholar
18Brunauer, S., Kantro, D.L.Weise, C.H.: The surface energies [enthalpies] of amorphous silica and hydrous amorphous silica. Can. J. Chem. 34, 1483 1956Google Scholar
19Elam, J.W., Groner, M.D.George, S.M.: Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition. Rev. Sci. Instrum. 73, 2981 2002Google Scholar
20Jensen, J.M., Oelkers, A.B., Toivola, R., Johnson, D.C., Elam, J.W.George, S.M.: X-ray reflectivity characterization of ZnO/Al2O3 multilayers prepared by atomic layer deposition. Chem. Mater. 14, 2276 2002Google Scholar
21Elam, J.W.George, S.M.: Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques. Chem. Mater. 15, 1020 2003Google Scholar
22Navrotsky, A.: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 289 1977Google Scholar
23Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 1997Google Scholar
24Brunauer, S., Emmett, P.H.Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 1938Google Scholar
25Barret, E.P., Joyner, L.G.Halenda, P.B.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 1951CrossRefGoogle Scholar
26Ushakov, S.V.Navrotsky, A.: Direct measurements of water adsorption enthalpy on hafnia and zirconia. Appl. Phys. Lett. 87, 164103 2005Google Scholar
27Rououerolt, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W.Unger, K.K.: Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739 1994Google Scholar
28Rodriguez, M.A., Navrotsky, A.Licci, F.: Thermochemistry of YBa2Cu3−xMxOy (M = Ni, Zn). Phys. C 329, 88 2000Google Scholar
29Maniar, P.D., Navrotsky, A.Draper, C.W.: Thermochemistry of the amorphous system silicon dioxide-germanium dioxide: Comparison of flame hydrolysis materials to high temperature fused glasses in Optical Fiber Materials and Processing,, edited by J.W. Fleming, G.H. Sigel, Jr., S. Takahashi, and P.W. France (Mater. Res. Soc. Symp. Proc., 172, Pittsburgh, PA, 1990) p. 15Google Scholar
30Robie, R.A.Hemingway, B.S.: US Geol. Surv. Bull., Washington, DC 2131 1995Google Scholar
31Gast, R.G., Landa, E.R.Meyer, G.W.: Interaction of water with goethite (α-FeOOH) and amorphous hydrated ferric oxide surfaces. Clays Clay Miner. 22, 31 1974Google Scholar