Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-28T08:30:13.433Z Has data issue: false hasContentIssue false

A study of piezoelectric orthorhombic Ta2O5

Published online by Cambridge University Press:  31 January 2011

B. R. Jooste
Affiliation:
Department of Chemical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0126
H. J. Viljoen
Affiliation:
Department of Chemical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0126
Get access

Extract

In 1985 it was first reported that monoclinic Ta2O5 has piezoelectric properties comparable to ZnO. In this work we report on the deposition, characterization, and qualitative assessment of the piezoelectric behavior of orthorhombic Ta2O5. Reactive magnetron sputtering was used to deposit thin films of Ta2O5 onto substrates of 316L stainless steel. Without substrate heating the crystallinity was poor. A rapid thermal anneal improved the crystallinity. The orthorhombic phase was dominantly present on all substrates. The piezoelectric property was qualitatively assessed, including a high temperature test at 650 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jehn, H. and Olzi, E., J. Less Common Metals 27, 297 (1972).CrossRefGoogle Scholar
2.Stephenson, N.C. and Roth, R. S., J. Solid State Chem. 3, 145 (1970).CrossRefGoogle Scholar
3.Boiko, B. T., Kopach, V.R., Krushedol'skaya, N.G., Panchekha, P.A., Pozdeev, Y. L., and Starikov, V.V., Izv. Vyssh. Uchebn. Zaved. Fiz. 1, 46 (1991).Google Scholar
4.Dubrovskaya, L.B., Shveikin, G. P., and Gel'd, P.V., Zh. Neorg. Khim. 9, 1182 (1964).Google Scholar
5.Raisman, A. and Holzberg, F., in High Temperature Oxides II, edited Harper, A.M. (Academic Press, New York, 1970).Google Scholar
6.Nakagawa, Y. and Gomi, Y., Appl. Phys. Lett. 46, 139 (1985).CrossRefGoogle Scholar
7.Nakagawa, Y. and Okada, T., J. Appl. Phys. 68, 556 (1990).CrossRefGoogle Scholar
8.Maeda, M., Hironari, T., and Satoshi, I., Jpn. J. Appl. Phys. 30 (9B), 2394 (1991).CrossRefGoogle Scholar
9.Schaefer, A., Shmitt, H., and Dorr, A., Ferroelectrics 69, 253 (1986).CrossRefGoogle Scholar
10.Nagata, K. and Harashima, E., Jpn. J. Appl. Phys. 9B, 534 (1994).Google Scholar
11.Gadzhiev, M. S., Sandalyuk, I.V., and Trofimov, A. I., Izmeri-tel'naya Tekhnika 9, 1043 (1993).Google Scholar
12.Weilie, Z., Peilin, Z., and Sidong, L., Ferroelectrics 101, 173 (1990).CrossRefGoogle Scholar
13.Rittenmeyer, K.M., J. Acoust. Soc. Am. 96, 307318 (1994).CrossRefGoogle Scholar
14.Song, A., Kim, E. S., and Kapila, A., J. Electron. Mater. 24 (2), 83 (1995).CrossRefGoogle Scholar
15.Herbert, J.M., in Ferroelectric Transducers and Sensors (Gordon and Breach Science Publishers, Inc., New York, 1982), p. 397.Google Scholar
16.Ikeya, T. and Senna, M., J. Non-Cryst. Solids 113, 51 (1989).CrossRefGoogle Scholar
17.Chang, P.H. and Liu, H.Y., Thin Solid Films 258, 56 (1995).CrossRefGoogle Scholar
18.Shimizu, K., Thompson, G. E., and Wood, G.C., Philos. Mag. B 63, 891 (1991).CrossRefGoogle Scholar
19.Pignolet, A., Rao, G.M., and Krupanidhi, S. B., Thin Solid Films 285, 230 (1995).CrossRefGoogle Scholar
20.Shinriki, H., Nakata, M., Nishioka, Y., and Mukai, K., IEEE Electron Device Lett. 10, 514 (1989).CrossRefGoogle Scholar
21.Treichel, H., Mitwalsky, A., Sandler, N. P., Tribula, D., Kern, W., and Lane, A. P., Adv. Mater. for Optics and Electronics 1, 299 (1992).CrossRefGoogle Scholar
22.Cady, W.G., Piezoelectricity (McGraw-Hill, New York, 1946).Google Scholar
23.Nakagawa, Y., Gomi, Y., and Okada, T., J. Appl. Phys. 61, 5012 (1987).CrossRefGoogle Scholar