Hostname: page-component-5d59c44645-ndqjc Total loading time: 0 Render date: 2024-02-27T10:31:33.639Z Has data issue: false hasContentIssue false

Structure and thermoelectric properties of binary and Fe-doped iridium silicide thin films

Published online by Cambridge University Press:  31 January 2011

W. Pitschke
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
R. Kurt
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
A. Heinrich
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
J. Schumann
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
H. Grießmann
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
H. Vinzelberg
Affiliation:
Institute of Solid State and Materials Research Dresden, D-01171 Dresden, Germany
A. T. Burkov
Affiliation:
Department of Physics, University of Ryukyus, Okinawa 903–01, Japan
Get access

Abstract

The structure-formation process and thermoelectric properties of binary and Fe-doped IrxSi1−x (0.30 ≤ x ≤ 0.41) thin films were investigated. The films were prepared by means of physical vapor deposition techniques, in particular by magnetron co-sputtering and electron beam co-evaporation. The amount of Fe dopant varied between 0 and 5 at.%. The phase-formation process depends on the volume fractions of the major components Ir and Si, whereas the small concentrations of dopant did not change the sequence of the crystalline phases formed. On the other hand, the thermoelectric transport properties correlate strongly with both the structure-formation process and the chemical composition of the films. Fe-doped iridium silicide films with useful thermoelectric power factors were successfully obtained by both magnetron co-sputtering and electron beam co-evaporation. A maximum thermoelectric power factor of 8.5 μW/(K2 cm) at 1200 K was observed for evaporated layers with thechemical composition Ir0.35Si0.63Fe0.02.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Vining, C.B., in Proc. IX Conf. Thermoel. (California Institute of Technology, Pasadena, CA, 1990), p. 249.Google Scholar
2.Lange, H., Phys. Status Solidi B 201, 3 (1997).Google Scholar
3.Schumann, J., Elefant, D., Gladun, C., Heinrich, A., Pitschke, W., Lange, H., Henrion, W., and Grötzschel, R., Phys. Status Solidi A 145, 429 (1994).Google Scholar
4.Engström, I. and Zackrisson, F., Acta Chem. Scand. 24, 2109 (1970).Google Scholar
5.Allevato, C.E. and Vining, C.B., J. Alloys Compd. 200, 99 (1993).Google Scholar
6.Korst, W.L., Finnie, L.N., and Searcy, A.W., J. Phys. Chem. 61, 1541 (1957).Google Scholar
7.Engström, I. and Zackrisson, F., Acta Chem. Scand. 24, 2109 (1970).Google Scholar
8.Engström, I., Lindsten, T., and Zdansky, E., Acta Chem. Scand. 41A, 237 (1987).Google Scholar
9.White, J.G. and Hockings, E.F., Inorg. Chem. 10, 1934 (1971).Google Scholar
10.Allevato, C.E., Vining, C.B., Proc. 28th Intersoc. Energ. Conv. Eng. Conf., Washington, DC, Am. Chem. Soc. 1, 239 (1993).Google Scholar
11.Pitschke, W., Heinrich, A., Schumann, J., Mattern, N., Danzig, A., and Doyle, St., Annual Report 1994 (HASYLAB, Hamburg, Germany, 1994), p. 617.Google Scholar
12.Kurt, R., Pitschke, W., Heinrich, A., Schumann, J., Thomas, J., Wetzig, K., and Burkov, A., Thin Solid Films 310, 8 (1997).Google Scholar
13.Kurt, R., Hoffmann, V., Reiche, R., Pitschke, W., and Wetzig, K., Fresenius J. Anal. Chem. 363, 179 (1999).Google Scholar
14.Rietveld, H.M., J. Appl. Crystallogr. 2, 65 (1969).Google Scholar
15.Young, R.A., Sakthivel, A., Moss, T.S., and Paiva-Santos, C.O., Users guide to Program DBWS-9411 (Georgia Institute of Technology, Atlanta, GA, 1995).Google Scholar
16.Pitschke, W., Mater. Sci. Forum 228–231, 171 (1996).Google Scholar
17.Hill, R.J. and Howard, C.J., J. Appl. Crystallogr. 27, 467 (1987).Google Scholar
18.Kurt, R., Pitschke, W., Thomas, J., Wendrock, H., Brückner, W., and Wetzig, K., Fresenius J. Anal. Chem. 361, 609 (1998).Google Scholar
19.Burkov, A.T., Heinrich, A., Konstantinov, P.P., Nakama, T., and Yagasaki, K., Rev. Sci. Instrum. (in press).Google Scholar
20.Visser, J.W., J. Appl. Crystallogr. 2, 89 (1969).Google Scholar
21.Gladun, C., Heinrich, A., Schumann, J., Pitschke, W., and Vinzelberg, H., Int. J. Electron. 77, 301 (1994).Google Scholar
22.Petersson, S., Baglin, J., Hammer, W., d'Heurle, F., Kuan, T.S., Ohdomary, I., de Souza Pires, J., and Tove, P., J. Appl. Phys. 50, 3357 (1978).Google Scholar
23.Petersson, S., Reimer, J.A., Brodsky, M.H., Campbell, D.R., d'Heurle, F., Karlsson, B., and Tove, P.A., J. Appl. Phys. 53, 3342 (1982).Google Scholar
24.Heinrich, A., Behr, G., Grieβmann, H., Teichert, S., and Lange, H., in Thermoelectric Materials—New Directions and Approaches, edited by Tritt, T.M., Kanatzidis, M.G., Lyon, H.B. Jr, and Mahan, G.D. (Mater. Res. Soc. Symp. Proc. 478, Pittsburgh, PA, 1997), p. 225.Google Scholar