Published online by Cambridge University Press: 20 February 2015
Effect of combined electromagnetic fields (EMFs) on the structures of a 3004 aluminum alloy ingot produced by horizontal direct chill casting was crystallographically investigated. The results showed that the structure was transformed from a mixture of equiaxed and fine columnar grains to coarse columnar grains with switching off the EMFs. With the EMFs the grain size is small and shows a uniform distribution, whereas without the EMFs it is increased and reveals inhomogeneous distribution on the cross section. Besides, a transition region composed of fine equiaxed grains appeared at the moment the EMFs were switched off (between the mixture and coarse columnar grains). Furthermore, the microstructure transformation is accompanied by a crystallographic orientation change from a preferred <100> orientation to a random orientation, and then to an intense <100> fiber texture. The structural and crystallographic transformations are mainly related to the forced convection in the melt due to the induced Lorentz force by the EMFs.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.