Hostname: page-component-5d59c44645-mrcq8 Total loading time: 0 Render date: 2024-02-22T18:26:41.328Z Has data issue: false hasContentIssue false

Strain relaxation defects in perovskite oxide superlattices

Published online by Cambridge University Press:  19 March 2012

Meng Gu
Department of Chemical Engineering and Materials Science, University of California–Davis, Davis, California 95616
Michael D. Biegalski
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Hans M. Christen
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Chengyu Song
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720
Craig R. Dearden
Department of Chemical Engineering and Materials Science, University of California–Davis, Davis, California 95616
Nigel D. Browning
Department of Chemical Engineering and Materials Science, University of California–Davis, Davis, California95616; Department of Molecular and Cellular Biology, University of California–Davis, Davis, California 95616
Yayoi Takamura*
Department of Chemical Engineering and Materials Science, University of California–Davis, Davis, California 95616
b)Address all correspondence to this author. e-mail:
Get access


This paper reports on the defect structures formed upon strain relaxation in pulsed laser-deposited complex oxide superlattices consisting of the ferromagnetic metal, La0.67Sr0.33MnO3, and the antiferromagnetic insulator, La0.67Sr0.33FeO3. Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy were used to characterize the structure and chemistry of the defects. For thinner superlattices, strain relaxation occurs through the formation of 2-D stacking faults, whereas for thicker superlattices, the prolonged thermal exposure during film growth leads to the formation of nanoflowers and cracks/pinholes to reduce the overall strain energy.

Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Ohtomo, A. and Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427(6973), 423 (2004).Google Scholar
2.Takamura, Y., Yang, F., Kemik, N., Arenholz, E., Biegalski, M.D., and Christen, H.M.: Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices. Phys. Rev. B 80(18), 180417 (2009).Google Scholar
3.Nakagawa, N., Hwang, H.Y., and Muller, D.A.: Why some interfaces cannot be sharp. Nat. Mater. 5(3), 204 (2006).Google Scholar
4.Qiao, L., Droubay, T.C., Varga, T., Bowden, M.E., Shutthanandan, V., Zhu, Z., Kaspar, T.C., and Chambers, S.A.: Epitaxial growth, structure, and intermixing at the LaAlO3/SrTiO3 interface as the film stoichiometry is varied. Phys. Rev. B 83(8), 085408 (2011).Google Scholar
5.Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., and Lowndes, D.H.: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433(7024), 395 (2005).Google Scholar
6.Ferguson, J.D., Kim, Y., Kourkoutis, L.F., Vodnick, A., Woll, A.R., Muller, D.A., and Brock, J.D.: Epitaxial oxygen getter for a brownmillerite phase transformation in manganite films. Adv. Mater. 23(10), 1226 (2011).Google Scholar
7.Ramirez, A.P.: Colossal magnetoresistance. J. Phys. Condens. Matter 9(39), 8171 (1997).Google Scholar Gennes, P.G.: Effects of double exchange in magnetic crystals. Phys. Rev. 118(1), 141 (1960).Google Scholar
9.Millis, A.J., Littlewood, P.B., and Shraiman, B.I.: Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995).Google Scholar
10.Goodenough, J.B.: Magnetism and Chemical Bond (Interscience, London, 1963), Vol. 1.Google Scholar
11.Yang, J.B., Yelon, W.B., James, W.J., Chu, Z., Kornecki, M., Xie, Y.X., Zhou, X.D., Anderson, H.U., Joshi, A.G., and Malik, S.K.: Crystal structure, magnetic properties, and mossbauer studies of La0.6Sr0.4FeO3-δ prepared by quenching in different atmospheres. Phys. Rev. B 66(18), 184415 (2002).Google Scholar
12.Arenholz, E., van der Laan, G., Yang, F., Kemik, N., Biegalski, M.D., Christen, H.M., and Takamura, Y.: Magnetic structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3 superlattices. Appl. Phys. Lett. 94(7), 072503 (2009).Google Scholar
13.Yang, F., Kemik, N., Scholl, A., Doran, A., Young, A.T., Biegalski, M.D., Christen, H.M., and Takamura, Y.: Correlated domain structure in perovskite oxide superlattices exhibiting spin-flop coupling. Phys. Rev. B 83(1), 014417 (2011).Google Scholar
14.Erni, R., Rossell, M.D., Kisielowski, C., and Dahmen, U.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009).Google Scholar
15.Koch, C.: Determination of core structure periodicity and point defect density along dislocations. Ph.D Thesis, Arizona State University, 2002.Google Scholar
16.Arenholz, E. and Prestemon, S.O.: Design and performance of an eight-pole resistive magnet for soft x-ray magnetic dichroism measurements. Rev. Sci. Instrum. 76(8), 083908 (2005).Google Scholar
17.Kemik, N., Gu, M., Yang, F., Chang, C.-Y., Song, D., Bibee, M., Mehta, A., Biegalski, M.D., Christen, H.M., Browning, N.D., and Takamura, Y.: Resonant x-ray reflectivity study of perovskite oxide superlattices. Appl. Phys. Lett. 99, 201908 (2011).Google Scholar
18.Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32(5), 751 (1976).Google Scholar
19.Fischer, A.M., Wu, Z., Sun, K., Wei, Q., Huang, Y., Senda, R., Iida, D., Iwaya, M., Amano, H., and Ponce, F.A.: Misfit strain relaxation by stacking fault generation in InGaN quantum wells grown on m-plane GaN. Appl. Phys. Express 2, 041002/1 (2009).Google Scholar
20.Schmid, H.K. and Mader, W.: Oxidation states of Mn and Fe in various compound oxide systems. Micron 37(5), 426 (2006).Google Scholar
21.Riedl, T., Gemming, T., and Wetzig, K.: Extraction of EELS white-line intensities of manganese compounds: Methods, accuracy, and valence sensitivity. Ultramicroscopy 106, 284 (2006).Google Scholar
22.Muller, D.A.: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8(4), 263 (2009).Google Scholar
23.Shah, A.B., Ramasse, Q.M., Wen, J.G., Bhattacharya, A., and Zuo, J.M.: Practical spatial resolution of electron energy loss spectroscopy in aberration-corrected scanning transmission electron microscopy. Micron 42(6), 539 (2011).Google Scholar
24.Siwach, P.K., Singh, H.K., Srivastava, O.N.: Influence of strain relaxation on magnetotransport properties of epitaxial La0.7Ca0.3MnO3 films. J. Phys. Condens. Matter 18(43), 9783 (2006).Google Scholar
25.He, J.Q., Klie, R.F., Logvenov, G., Bozovic, I., and Zhu, Y.M.: Microstructure and possible strain relaxation mechanisms of La2CuO4+δ thin films grown on LaSrAlO4 and SrTiO3 substrates. J. Appl. Phys. 101(7), 073906 (2007).Google Scholar
26.Matthews, J.W. and Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974).Google Scholar
27.Peng, L.S.J., Xi, X.X., Moeckly, B.H., and Alpay, S.P.: Strain relaxation during in situ growth of SrTiO3 thin films. Appl. Phys. Lett. 83, 4592 (2003).Google Scholar
28.Tersoff, J. and LeGoues, F.K.: Competing relaxation mechanisms in strained layers. Phys. Rev. Lett. 72(22), 3570 (1994).Google Scholar
29.Loane, R.F., Kirkland, E.J., and Silcox, J.: Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images. Acta Crystallogr., Sect. A 44(6), 912 (1988).Google Scholar
30.Mastrikov, Y., Heifets, E., Kotomin, E., and Maier, J.: Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces. Surf. Sci. 603(2), 326 (2009).Google Scholar Groot, F.M.F.: X-ray absorption and dichroism of transition metals and their compounds. J. Electron. Spectrosc. Relat. Phenom. 67(4), 529 (1994).Google Scholar
32.Huijben, M., Martin, L.W., Chu, Y.H., Holcomb, M.B., Yu, P., Rijnders, G., Blank, D.H.A., and Ramesh, R.: Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. Phys. Rev. B 78(9), 094413 (2008).Google Scholar
33.Takamura, Y., Chopdekar, R.V., Arenholz, E., and Suzuki, Y.: Control of the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films through epitaxial strain. Appl. Phys. Lett. 92(16), 162504 (2008).Google Scholar
34.Konishi, Y., Fang, Z., Izumi, M., Manako, T., Kasai, M., Kuwahara, H., Kawasaki, M., Terakura, K., and Tokura, Y.: Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Jpn. 68, 3790 (1999).Google Scholar
35.Moreno, C., Abellán, P., Hassini, A., Ruyter, A., del Pino, A.P., Sandiumenge, F., Casanove, M.-J., Santiso, J., Puig, T., and Obradors, X.: Spontaneous outcropping of self-assembled insulating nanodots in solution-derived metallic ferromagnetic La0.7Sr0.3MnO3 films. Adv. Funct. Mater. 19(13), 2139 (2009).Google Scholar
36.Yang, F., Kemik, N., egalski, M.D., Christen, H.M., Arenholz, E., and Takamura, Y.: Strain engineering to control the magnetic and magnetotransport properties of La0.67Sr0.33MnO3 thin films. Appl. Phys. Lett. 97,092503/1 (2010).Google Scholar
Supplementary material: File

Gu et al. supplementary material


Download Gu et al. supplementary material(File)
File 4 MB