Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T07:36:28.316Z Has data issue: false hasContentIssue false

Space-charge concepts on grain boundary impedance of a high-purity yttria-stabilized tetragonal zirconia polycrystal

Published online by Cambridge University Press:  31 January 2011

Jong-Sook Lee*
Affiliation:
Center for Microstructure Science of Materials and School of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
Doh-Yeon Kim
Affiliation:
Center for Microstructure Science of Materials and School of Materials Science and Engineering, Seoul National University, Seoul 151–742, Korea
*
a)Address correspondence to this author. Present address: National Institute of Standards and Technology, Gaithersburg, MD.
Get access

Abstract

A detailed impedance analysis using the brick-layer model is performed on a high-purity yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Space-charge impedance is generally formulated and expressions for the respective space-charge models are therefrom derived depending on whether dopant ions are mobile or immobile. Pronounced yttrium segregation in Y-TZP is also considered in the analysis in that the dopant profile is assumed to be frozen from a high-temperature equilibrium distribution. Comparison with experimental observations shows that the electrically measured grain-boundary thickness corresponds to the Schottky-barrier width, slightly modified by the dopant segregation. The grain-boundary resistance is not consistent with any space-charge models and the strong defect interaction due to the yttrium enrichment is suggested to be mainly responsible.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1See e.g., the articles in Science and Technology of Zirconia III, edited by Somiya, S., Yamamoto, N., and Yanagida, H. (American Ceramic Society, Westerville, OH, 1988).Google Scholar
2Bonanos, N., Slotwinsiki, R.K., Steele, B.C.H., and Butler, E.P., J. Mater. Sci. Lett. 3, 245 (1984).CrossRefGoogle Scholar
3Weppner, W., Solid State Ionics 52, 15 (1992).CrossRefGoogle Scholar
4Bauerle, J.E., J. Phys. Chem. Solids, 30, 2657 (1969).CrossRefGoogle Scholar
5Kleitz, M., Dessamond, L., and Steil, M.C., Solid State Ionics, 75, 107 (1995).CrossRefGoogle Scholar
6Fleig, J., and Maier, J., J. Am. Ceram. Soc., 82, 3485 (1999).CrossRefGoogle Scholar
7Bonanos, N., Steele, B.C.H., Butler, E.P., Johnson, W.B., Worrel, W.L., Macdonald, D.D., and McKubre, M.C.H., in Impedance Spectros-copy, edited by Macdonald, J.R. (John Wiley, New York, 1987), 191.Google Scholar
8Kleitz, M., Bernard, H., Fernandez, E., and Schouler, E., in Science and Technology of Zirconia, edited by Heuer, A.H. and Hobbs (American Ceramic Society, Columbus, OH, 1981), 310.Google Scholar
9Baumard, J.F., Papet, P., and Abélard, P., in Science and Technology of Zirconia III, edited by Sõmiya, S., Yamamoto, N., and Hanagida, H. (American Ceramic Society, Westerville, OH, 1988), p. 779.Google Scholar
10Rühle, M., Claussen, N., and Heuer, A.H., in Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A.H. (American Ceramic Society, Columbus, OH, 1984), p. 352.Google Scholar
11Gödickemeier, M., Michel, B., Orliukas, A., Bohac, P., Sasaki, K., Gauckler, L., Heinrich, H., Schwander, P., Kostoraz, G., Hofmann, H., and Frei, O., J. Mater. Res. 9, 1228 (1994).CrossRefGoogle Scholar
12Nieh, T.G., Yaney, D.L., and Wadsworth, J., Script. Metall. 23, 2007 (1989).CrossRefGoogle Scholar
13Badwal, S.P.S. and Drennan, J., J. Mater. Sci. 24, 88 (1989).CrossRefGoogle Scholar
14Badwal, S.P.S., Ciacchi, F.T., and Hannink, R.H.J., Solid State Ionics, 40/41, 882 (1990).CrossRefGoogle Scholar
15Badwal, S.P.S., Appl. Phys. A 50, 449 (1990).CrossRefGoogle Scholar
16Chen, C.S., Boutz, M.M.R., Winnubst, A.J.A., and Burggraaf, A.J., Mater. Sci. Eng. A 168, 231 (1993).CrossRefGoogle Scholar
17Badwal, S.P.S. and Drennan, J., J. Mater. Sci. 24, 88 (1989).CrossRefGoogle Scholar
18Hughes, A.E., in Science of Ceramic Interfaces II, edited by Nowotny, J. (Elsevier Science, Amsterdam, 1994), p. 183.Google Scholar
19Verkerk, M.J., Middelhuis, B.J., and Burggraaf, A.J., Solid State Ionics, 6, 159 (1982).CrossRefGoogle Scholar
20Aoki, M., Chiang, Y-M., Kosacki, I., L.Lee, J-R., Tuller, H., and Liu, Y., J. Am. Ceram. Soc. 79, 1169 (1996).CrossRefGoogle Scholar
21Heyne, L., in Mass Transport in Solids, edited by Bénière, F. and Catlow, C.R.A. (Plenum Press, New York, 1983), p. 425.CrossRefGoogle Scholar
22Guo, X., Solid State Ionics, 81, 235 (1995).CrossRefGoogle Scholar
23Bonanos, N. and Butler, E.P., J. Mater. Sci. 4, 561 (1985).Google Scholar
24Abelard, P. and Baumard, J.F., Phys. Rev. B 26, 1005 (1982).CrossRefGoogle Scholar
25Lanagan, M.T., Yamamoto, J.K., Bhalla, A., and Sankar, S.G., Mater. Lett. 7, 437 (1989).CrossRefGoogle Scholar
26Chen, Y. and Sellar, J.R., Solid State Ionics, 86–88, 207 (1996).CrossRefGoogle Scholar
27Henn, F.E.G., Buchanan, R.M., Jiang, N., and Stevenson, D.A., Appl. Phys. A, 60, 515 (1995).CrossRefGoogle Scholar
28Weller, M., Schubert, H. and Kountouros, P., in Science and Technology of Zirconia V, edited by Badwal, S.P.S., Bannister, M.J., and Hannink, R.H.J. (Technomics, Lancaster, PA, 1993), p. 546.Google Scholar
29Barmi, A.E., Schouler, E.J.L., Hammou, A., and Kleitz, M., in Science and Technology of Zirconia III, edited by Somiya, S., Yamamoto, N., and Yanagida, H. (American Ceramic Society, Westerville, OH, 1988), p. 885.Google Scholar
30Badwal, S.P.S., J. Mater. Sci. 19, 1767 (1984).CrossRefGoogle Scholar
31Nowick, A.S. and Park, D.S., in Superionic Conductors, edited by Mahan, G. and Roth, W. (Plenum Press, New York, 1976), p. 395.CrossRefGoogle Scholar
32Baumard, J.F. and Abelard, P., in Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A.H. (American Ceramic Society, Columbus, OH, 1984), p. 555.Google Scholar
33Badwal, S.P.S. and Drennan, J., J. Mater. Sci. 22, 3231 (1987).CrossRefGoogle Scholar
34Heinisch, H.K., in Semiconductor Contacts: An Approach to Ideas and Models (Clarendon Press, Oxford, 1984).Google Scholar
35Wang, D.Y. and Nowick, A.S., J. Solid State Chem 35, 325 (1980).CrossRefGoogle Scholar
36Vollmann, M. and Waser, R., J. Am. Ceram. Soc. 77, 235 (1994).CrossRefGoogle Scholar
37Maier, J., in High Temperature Electrochemistry: Ceramics and Metals, edited by Poulsen, F.W., Bonanos, N., Linderoth, S., Mogensen, M., and Zachau-Christiansen, B. (Risø National Laboratory, Roskilde, Denmark, 1996), p. 67.Google Scholar
38Denk, I., Claus, J., and Maier, J., J. Electrochem. Soc. 144, 3526 (1997).CrossRefGoogle Scholar
39Kliewer, K.L. and Koehler, J.S., Phys. Rev. 140, A1226 (1965).CrossRefGoogle Scholar
40Hwang, S-L. and Chen, I.W., J. Am. Ceram. Soc. 73, 3269 (1990).CrossRefGoogle Scholar
41Theunissen, G.S.A.M., Winnubst, A.J.A., and Burggraaf, A.J.. J. Mater. Sci. 27, 5057 (1992).CrossRefGoogle Scholar
42Lee, I-G. and Chen, I-W., in Sintering ’87, edited by Somiya, S., Shimada, M., Yoshimura, M., and Watanabe, R., (Elsevier Science, Amsterdam, 1988), p. 340.CrossRefGoogle Scholar
43Theunissen, G.S.A.M., Winnubst, A.J.A., and Burggraaf, A.J., J. Eur. Ceram. Soc. 9, 251 (1992).CrossRefGoogle Scholar
44Guo, X., J. Phys. Chem. Solids 60, 539 (1999).CrossRefGoogle Scholar
45Kingery, W.D., Bowen, H.K., Uhlmann, D.R., in Introduction to Ceramics (John Wiley, New York, 1976).Google Scholar
46Burggraaf, A.J. and Winnubst, A.J.A., in Surface and Near Surface Chemistry of Oxide Materials, edited by Nowotny, J. and Dufour, L-C., (Elsevier Science, Amsterdam, 1988), p. 449.Google Scholar
47Nowotny, J., Sloma, M., and Weppner, W., Solid State Ionics 28, 269 (1988).Google Scholar
48Jamnik, J. and Maier, J., Solid State Ionics 119, 191 (1999).CrossRefGoogle Scholar
49Leonhardt, M., Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany (1999).Google Scholar
50Maier, J., Prog. Solid State Chem. 23, 171 (1995).CrossRefGoogle Scholar
51Maier, J., Ber. Buinsenges. Phys. Chem. 90, 26 (1986).CrossRefGoogle Scholar
52Bockris, J.O’M. and Reddy, A.K.N., in Modern Electrochemistry (Plenum Press, New York, 1970).Google Scholar
53Martin, U., Boysen, H., and Frey, F., Acta Cryst. B. 49, 403 (1993).CrossRefGoogle Scholar
54Castro, M.S., Nunez, G.M., Resasco, D.E., and Aldao, D.M., J. Am. Ceram. Soc. 75, 800 (1992).CrossRefGoogle Scholar
55Chiang, Y-M. and Takagi, T., J. Am. Ceram. Soc. 73, 3278 (1990).CrossRefGoogle Scholar
56Yan, M.F., Cannon, R.M., and Bowen, H.K., J. Appl. Phys. 54, 779 (1983).CrossRefGoogle Scholar
57Han, J-H. and Kim, D-Y., J. Am. Ceram. Soc. 84, 539 (2001).CrossRefGoogle Scholar
58Guo, X. and Maier, J., J. Electrochem. Soc. 148, E121 (2001).CrossRefGoogle Scholar
59Ngai, K.L., Philos. Mag. B. 77, 187 (1998).CrossRefGoogle Scholar