Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T13:48:10.521Z Has data issue: false hasContentIssue false

Solid-state 27Al Nuclear Magnetic Resonance Investigation of Plasma-facilitated NOx Reduction Catalysts

Published online by Cambridge University Press:  31 January 2011

Li-Qiong Wang*
Affiliation:
Pacific Northwest National Laboratory, Box 999, MS K2–44, Richland, Washington 99352
Christopher L. Aardahl
Affiliation:
Pacific Northwest National Laboratory, Box 999, MS K2–44, Richland, Washington 99352
Kenneth G. Rappé
Affiliation:
Pacific Northwest National Laboratory, Box 999, MS K2–44, Richland, Washington 99352
Diana N. Tran
Affiliation:
Pacific Northwest National Laboratory, Box 999, MS K2–44, Richland, Washington 99352
Marisol A. Delgado
Affiliation:
Pacific Northwest National Laboratory, Box 999, MS K2–44, Richland, Washington 99352
Craig F. Habeger
Affiliation:
Caterpillar Inc., Technical Center E/854, PO Box 1875, Peoria, Illinois 61656
*
a)Address all correspondence to this author.
Get access

Abstract

Aluminum coordination distribution for alumina catalysts supported on mesoporous silica was examined. It was shown that aluminum coordination correlates to activity of the catalysts for plasma-enhanced, selective catalytic reduction of NOx with propene. Catalysts were prepared by incorporating aluminum onto the surface of a mesoporous silica support via three different post-synthesis routes to produce varying aluminum coordination. Aluminum trichloride, sodium aluminate, and aluminum isopropoxide precursors were examined. High-resolution, solid state 27Al nuclear magnetic resonance was used to determine aluminum coordination distributions for the resulting catalysts. Unsaturated aluminum sites (i.e., structural defects) correlated with increased activity at high temperatures while tetrahedrally-coordinated aluminum or BrØnsted acid sites correlated with activity at low temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kawabata, K., Yoshimatsu, H., Fujiwara, K., Yabuki, T., Osaka, A., and Miura, Y., J. Mater. Sci. 34, 2529 (1999).Google Scholar
Iwamoto, M. and Yahiro, H., Catal. Today 22, 5 (1994).CrossRefGoogle Scholar
Hamada, H., Catal. Today 22, 21 (1994).CrossRefGoogle Scholar
Efthimiadis, E.A., Lappas, A.A., Iatrides, D.K., and Vasalos, I.A., Ind. Eng. Chem. Res. 40, 515 (2001).Google Scholar
Sweeney, A.J. and Liu, Y.A., Ind. Eng. Chem. Res. 40, 2618 (2001).CrossRefGoogle Scholar
Márquez-Alvarez, C., Rodríguez-Ramos, I., Guerrero-Ruiz, A., Haller, G.L., and Fernández-García, M., J. Am. Chem. Soc. 119, 2905 (1997).Google Scholar
Bamwenda, G.R., Obuchi, A., Ogata, A., Oi, J., Kushiyama, S., Yagita, H., and Mizuno, K., Stud. Surf. Sci. Catal. V–121, 263 (1998–1999).Google Scholar
Park, P.W., Koshkarian, K.A., and Readey, M.J., Proc. DEER Workshop, Castine, Maine, Office of Heavy Vehicle Technology, U.S. Department of Energy, July 1999, p. V-29.Google Scholar
Maunula, T., Kintaichi, Y., Haneda, M., and Hamada, H., Catal. Lett. 61, 121 (1999).CrossRefGoogle Scholar
Shimizu, K., Shibata, J., Yoshihda, H., Satsuma, A., and Hattori, T., Appl. Catal. B 30, 151 (2001).CrossRefGoogle Scholar
Meunier, F.C., Ukropec, R., Stapleton, C., and Ross, J.R.H., Appl. Catal. B 30, 163 (2001).CrossRefGoogle Scholar
McLarnon, C.R. and Penetrante, B.M., SAE Paper 982433 (1998).Google Scholar
Luan, Z., Hartmann, M., Zhao, D., Zhou, W., and Kevan, L., Chem. Mater. 11, 1621 (1999).CrossRefGoogle Scholar
Iengo, P., Serio, M. Di, Serrentino, A., Solinas, V., and Santacesaria, E., Appl. Catal. A 167, 85 (1998).Google Scholar
Kosslick, H., Lischke, G., Parlitz, B., Storek, W., and Fricke, R., Appl. Catal. A 184, 49 (1999).CrossRefGoogle Scholar
Corma, A., Fornés, V., Navarro, M.T., and Pérez-Pariente, J., J. Cata. 148, 569 (1994).CrossRefGoogle Scholar
Luca, V., MacLachlan, D.J., Bramley, R., and Morgan, K., J. Phys. Chem. 100, 1793 (1996).Google Scholar
Chen, C-Y., Li, H-X., and Davis, M.E., Microporous Mater. 2, 17 (1993).CrossRefGoogle Scholar
Schmidt, R., Akporiaye, D., Stöcker, M., and Ellestad, O.H., J. Chem. Soc., Chem. Commun. 12, 1493 (1994).CrossRefGoogle Scholar
Liu, J., Kim, A.Y., Virden, J.W., and Bunker, B.C., Langmuir, 11, 689 (1995).Google Scholar
Rappé, K.G., Aardahl, C.L., Habeger, C.F., Tran, D.N., Delgado, M.A., Wang, L-Q., Park, P.W., Tomlins, G.W., and Balmer, M.L., SAE 2001 Conference paper.Google Scholar
Rosenthal, L.A. and Davis, D.A., Corona Discharge for Surface Treatment, IEEE Trans. Ind. Appl. I 5, 328 (1975).CrossRefGoogle Scholar
Luan, Z., Cheng, C-F., He, H., and Klinowski, J., J. Phys. Chem. 99, 10590 (1995).CrossRefGoogle Scholar
Ryoo, R., Jun, S., Kim, J.M., and Kim, M.J., Chem. Commun. 22, 2225 (1997).Google Scholar
Mokaya, R. and Jones, W., Chem. Commun. 21, 2185 (1997).CrossRefGoogle Scholar
Hamdan, H., Endun, S., He, H., Muhid, M.N.M., and Klinowski, J., J. Chem. Soc. Faraday Trans. 92, 2311 (1996).Google Scholar
Wang, J.A., Bokhimi, X., Novaro, O., Lopez, T., Tzompantzi, F., Gomez, R., Navarrete, J., Lianos, M.E., and López-Salinas, E., J. Mol. Catal. A 137, 239 (1999).Google Scholar