Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-29T17:50:06.441Z Has data issue: false hasContentIssue false

A sol-gel derived 0.9Pb(Mg1/2Nb2/3)O3–0.1PbTiO3 ceramic

Published online by Cambridge University Press:  31 January 2011

D. M. Wan
Affiliation:
Department of Materials Science, Faculty of Science, National University of Singapore, Singapore 119260
J. Wang
Affiliation:
Department of Materials Science, Faculty of Science, National University of Singapore, Singapore 119260
S. C. Ng
Affiliation:
Department of Physics, Faculty of Science, National University of Singapore, Singapore 119260
L. M. Gan
Affiliation:
Department of Chemistry/IMRE, Faculty of Science, National University of Singapore, Singapore 119260
Get access

Abstract

Using inorganic chemicals, such as niobium pentachloride, titanium tetrachloride, lead nitrate, and magnesium nitrate, as the starting materials, 0.9PMN–0.1PT has been fabricated via a simple and low cost sol-gel processing route. A colloidal solution was first prepared by adding an aqueous lead nitrate solution into an ethanol solution of niobium and titanium chlorides. Magnesium nitrate was then mixed into the solution when chloride ions were removed by forming precipitates of PbCl2 with the excess lead nitrate. The gelation of the colloidal solution was facilitated in the presence of a small amount of polyethylene glycol (PEG 300) at 70 °C. A fine perovskite 0.9PMN–0.1PT powder was obtained when the resulting gel was dried at 300 °C for 4 h and subsequently calcined. It was observed that the sol-gel derived precursor underwent a pyrochlore phase at 500–600 °C, prior to the formation of a perovskite single phase at a calcination temperature of 850 °C. A sintered density of ˜98% theoretical density was obtained when the fine 0.9PMN–0.1PT powder was sintered at 1250 °C for 2 h and the sintered ceramic shows a maximum dielectric constant of 26,682, together with a room temperature dielectric constant of 19,206 at 1 kHz. The superb dielectric properties are correlated to the microstructural features of the sol-gel derived 0.9PMN–0.1PT, which has been characterized using techniques such as XRD, SEM, and TEM.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujiawara, S., Furukawa, K., Kikachi, N., Iizawa, O., and Tanaka, H., High dielectric constant type ceramic composition, U.S. Patent, 4,265,668 (1981).Google Scholar
2.Swartz, S.L., Shrout, T. R., Schulze, W. A., and Cross, L. E., J. Am. Ceram. Soc. 67 (5), 311315 (1984).CrossRefGoogle Scholar
3.Uchino, K., Ceram. Bull. 65 (4), 647652 (1986).Google Scholar
4.Kelly, J., Leonard, M., Tantigate, C., and Safari, A., J. Am. Ceram. Soc. 80 (4), 957964 (1997).CrossRefGoogle Scholar
5.Lejeune, M. and Boilot, J. P., Ceram. Int. 9 (4), 119122 (1983).CrossRefGoogle Scholar
6.Lejeune, M. and Boilot, J.P., Am. Ceram. Soc. Bull. 64 (4), 679682 (1985).Google Scholar
7.Shrout, T.R. and Swartz, S. L., Mater. Res. Bull. 18, 663667 (1983).CrossRefGoogle Scholar
8.Mergen, A. and Lee, W. E., J. Eur. Ceram. Soc. 17, 10331047 (1997).CrossRefGoogle Scholar
9.Swartz, S. L. and Shrout, T. R., Mater. Res. Bull. 17, 12451250 (1982).CrossRefGoogle Scholar
10.Villegas, M., Moure, C., Duran, P., Fernández, J. F., Samardzuja, Z., and Kosec, M., Key Eng. Mater. 132–136, 10761079 (1997).CrossRefGoogle Scholar
11.Watanabe, A., Haneda, H., Moriyoshi, Y., Shirasaki, S., Kuramoto, S., and Yamamura, H., J. Mater. Sci. 27, 12451249 (1992).CrossRefGoogle Scholar
12.Yoshikawa, Y. and Uchino, K., J. Am. Ceram. Soc. 79 (9), 24172421 (1996).CrossRefGoogle Scholar
13.Ho, J-C., Liu, K-S., and Lin, I-N., J. Mater. Sci. 30, 39363943 (1995).CrossRefGoogle Scholar
14.Ravidranathan, P., Komarneni, S., Bhalla, A. S., and Roy, R., J. Am. Ceram. Soc. 74 (12), 29962999 (1991).CrossRefGoogle Scholar
15.Katayama, K., Abe, M., Akiba, T., and Yansgida, H., J. Eur. Ceram. Soc. 5, 183189 (1989).CrossRefGoogle Scholar
16.Ng, W.B., Wang, J., Ng, S. L., and Gan, L. M., unpublished.Google Scholar
17.Baek, J., Isobe, T., and Senna, M., J. Am. Ceram. Soc. 80 (4), 973981 (1997).CrossRefGoogle Scholar
18.Yanagisawa, K., J. Mater. Sci. Lett. 12, 18421843 (1993).CrossRefGoogle Scholar
19.Kanai, H., Harada, K., Yamashita, Y., Hasengawa, K., Mukaeda, S., and Handa, K., Jpn. J. Appl. Phys. 35, 51225125 (1996).CrossRefGoogle Scholar
20.Chaput, F., Boilot, J-P., and Lejeune, M., J. Am. Ceram. Soc. 72 (8), 13351357 (1989).CrossRefGoogle Scholar
21.Ando, T., Suyama, R., and Tanemoto, K., Jpn. J. Appl. Phys. 30 (4), 775779 (1991).CrossRefGoogle Scholar
22.Carvalho, J. C., Paiva-Santos, C. O., Zaghete, M. A., Oliveira, C. F., Varela, J. A., and Longo, E., J. Mater. Res. 11, 17951799 (1996).CrossRefGoogle Scholar
23.Larbot, A., Bali, H., Rafig, M., Julbe, A., Guuizard, C., and Cot, L., J. Non-Cryst. Solids 147–148, 7479 (1992).CrossRefGoogle Scholar
24.Alquier, C., Vandenborre, M. T., and Henry, M., J. Non-Cryst. Solids 79, 383395 (1986).CrossRefGoogle Scholar
25.Blum, B. and Gurkovich, S. R., J. Mater. Sci. 20, 44794483 (1985).CrossRefGoogle Scholar
26.Szymanski, H.A. and Erickson, R. E., Infrared Band Handbook, 2nd ed. (IFI/Plenum Data Corporation, New York, 1970), Vol. 2, p. 1415.CrossRefGoogle Scholar
27.Socrates, G., Infrared Characteristics Group Frequencies, 2nd ed. (John Wiley & Sons Ltd., England, 1994), p. 65.Google Scholar
28.Guha, J. P. and Anderson, H.U., J. Am. Ceram. Soc. 70 (3), c39–c-40 (1987).CrossRefGoogle Scholar
29.Buessem, W.R., Cross, L.E., and Goswami, A.K., J. Am. Ceram. Soc. 49 (1), 3336 (1966).CrossRefGoogle Scholar
30.Takeuchi, T., Tabuchi, M., Ado, K., Honjo, K., Nakamura, O., Kageyama, H., Suyama, Y., Ohtori, N., and Nagasawa, M., J. Mater. Sci. 32, 40534060 (1997).CrossRefGoogle Scholar
31.Zhang, Z. and Raj, R., J. Am. Ceram. Soc. 78 (12), 33633368 (1995).CrossRefGoogle Scholar
32.Huang, D.N., Yin, Z. W., and Cross, L. E., Proc. 6th IEEE Int. Symp. Appl. Ferroelectrics, 159184 (1986).CrossRefGoogle Scholar
33.Shrout, T.R., Kumar, U., Megheri, M., Yang, N., and Jang, S.J., Ferroelectrics 76, 479487 (1987).CrossRefGoogle Scholar
34.Chen, J., Gorton, A., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 69 (12), c303–c-305 (1986).Google Scholar
35.Wang, H.C. and Schulze, W.A., J. Am. Ceram. Soc. 73 (4), 825832 (1990).CrossRefGoogle Scholar
36.Randall, C.A., Hilton, A. D., and Barber, D. J., J. Mater. Res. 8, 880884 (1993).CrossRefGoogle Scholar