Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T02:18:02.097Z Has data issue: false hasContentIssue false

A review on low dimensional metal halides: Vapor phase epitaxy and physical properties

Published online by Cambridge University Press:  21 August 2017

Yang Hu
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Yuwei Guo
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Yiping Wang
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Zhizhong Chen
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Xin Sun
Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Jing Feng
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming City, Yunnan Province 650093, China
Toh-Ming Lu
Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Esther Wertz*
Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Jian Shi*
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
a)Address all correspondence to these authors. e-mail:
Get access


Excited by the great success of metal halide perovskites in the optoelectronic and electro-optic fields and the interesting emerging physics (Rashba splitting, quantum anomalous hall effect) of layered metal halides, metal halides have recently been attracting significant attentions from both research and industrial communities. It is shown that most progresses have been made when these materials are obtained at reduced dimensions. Among several growth methods, vapor phase epitaxy has been demonstrated with a universal control on morphology, phase, and composition. We thus believe that a thorough understanding on the physical properties and on the growth of general metal halide compounds at reduced dimensions would be very beneficial in the study of recent perovskites and layered metal halide materials. This review covers the physical properties of most studied metal halides and summarizes the vapor phase epitaxial growth knowledge collected in the past century. We hope that this comprehensive review could be helpful in designing new physical properties and in planning growth parameters for emerging metal halide crystals.

Invited Review
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



These authors contributed equally to this work.

Contributing Editor: Artur Braun

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Zhang, W., Eperon, G.E., and Snaith, H.J.: Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).Google Scholar
Stranks, S.D. and Snaith, H.J.: Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391402 (2015).Google Scholar
Fang, Y.J., Dong, Q.F., Shao, Y.C., Yuan, Y.B., and Huang, J.S.: Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679686 (2015).Google Scholar
Zhu, H.M., Fu, Y.P., Meng, F., Wu, X.X., Gong, Z.Z., Ding, Q., Gustafsson, M.V., Trinh, M.T., Jin, S., and Zhu, X.Y.: Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636642 (2015).Google Scholar
Dong, Q.F., Fang, Y.J., Shao, Y.C., Mulligan, P., Qiu, J., Cao, L., and Huang, J.S.: Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967970 (2015).Google Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341344 (2013).Google Scholar
Chen, Z.Z., Wang, Y.P., Shi, Y.H., Hsu, B., Yang, Z., and Shi, J.: Regulating carrier dynamics in single crystal halide perovskite via interface engineering and optical doping. Adv. Electron. Mater. 2, 16002481600254 (2016).Google Scholar
Liao, W.Q., Zhang, Y., Hu, C.L., Mao, J.G., Ye, H.Y., Li, P.F., Huang, S.D., and Xiong, R.G.: A lead-halide perovskite molecular ferroelectric semiconductor. Nat. Commun. 6, 7338 (2015).CrossRefGoogle ScholarPubMed
Stroppa, A., Di Sante, D., Barone, P., Bokdam, M., Kresse, G., Franchini, C., Whangbo, M.H., and Picozzi, S.: Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites. Nat. Commun. 5, 5900 (2014).CrossRefGoogle ScholarPubMed
Crepaldi, A., Moreschini, L., Autes, G., Tournier-Colletta, C., Moser, S., Virk, N., Berger, H., Bugnon, P., Chang, Y.J., Kern, K., Bostwick, A., Rotenberg, E., Yazyev, O.V., and Grioni, M.: Giant ambipolar Rashba effect in the semiconductor BiTeI. Phys. Rev. Lett. 109, 096803 (2012).Google Scholar
Felser, C., Ahn, K., Kremer, R.K., Seshadri, R., and Simon, A.: Giant negative magnetoresistance in GdI2—Prediction and realization. J. Solid State Chem. 147, 1925 (1999).CrossRefGoogle Scholar
Eremeeva, S.V., Nechaev, I.A., and Chulkov, E.V.: Giant Rashba type spin splitting at polar surfaces of BiTeI. JETP Lett. 96, 437444 (2012).Google Scholar
Ishizaka, K., Bahramy, M.S., Murakawa, H., Sakano, M., Shimojima, T., Sonobe, T., Koizumi, K., Shin, S., Miyahara, H., Kimura, A., Miyamoto, K., Okuda, T., Namatame, H., Taniguchi, M., Arita, R., Nagaosa, N., Kobayashi, K., Murakami, Y., Kumai, R., Kaneko, Y., Onose, Y., and Tokura, Y.: Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521526 (2011).Google Scholar
Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D.R., Cheng, R., Seyler, K.L., Zhong, D., Schmidgall, E., McGuire, M.A., Cobden, D.H., Yao, W., Xiao, D., Jarillo-Herrero, P., and Xu, X.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270273 (2017).Google Scholar
Huang, C., Zhou, J., Wu, H., Deng, K., Jena, P., and Kan, E.: Quantum anomalous Hall effect in ferromagnetic transition metal halides. Phys. Rev. B 95, 045113 (2017).Google Scholar
Eperon, G.E., Paterno, G.M., Sutton, R.J., Zampetti, A., Haghighirad, A.A., Cacialli, F., and Snaith, H.J.: Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 1968819695 (2015).Google Scholar
Zhu, H.M., Miyata, K., Fu, Y.P., Wang, J., Joshi, P.P., Niesner, D., Williams, K.W., Jin, S., and Zhu, X.Y.: Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 14091413 (2016).Google Scholar
Song, Z.N., Watthage, S.C., Phillips, A.B., Tompkins, B.L., Ellingson, R.J., and Heben, M.J.: Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites. Chem. Mater. 27, 46124619 (2015).Google Scholar
Kanno, R., Takeda, Y., Masuyama, Y., Yamamoto, O., and Takahashi, T.: Phase-diagram high copper–ion conductivity of the copper (I) chloride rubidium chloride system. Solid State Ionics 11, 221226 (1983).Google Scholar
Tubbs, M.R.: The optical properties and chemical decomposition of halides with layer structures II. Defects, chemical decomposition, and photographic phenomena. Phys. Status Solidi 67, 1149 (1975).Google Scholar
Tubbs, M.R.: The optical properties and chemical decomposition of lead iodide. Proc. R. Soc., Ser. A 280, 566585 (1964).Google Scholar
Dawood, R.I., Forty, A.J., and Tubbs, M.R.: The photodecomposition of lead iodide. Proc. R. Soc., Ser. A 284, 272288 (1964).Google Scholar
Kaldor, A. and Somorjai, G.A.: Photodecomposition of lead chloride. J. Phys. Chem. 70, 35383544 (1966).CrossRefGoogle Scholar
Spencer, H.E. and Darlak, J.O.: Lead bromide photochemistry: Reduction of lead ion and oxidation of leucocrystal violet. J. Phys. Chem. 72, 23842389 (1968).CrossRefGoogle Scholar
Fotland, R.A.: Photoconductivity and photolysis in cadmium iodide. J. Phys. Chem. 33, 956 (1960).CrossRefGoogle Scholar
Tubbs, M.R.: High resolution image recording on phtosensitive halide layers. J. Photogr. Sci. 17, 162169 (1969).Google Scholar
Moser, F., Nail, N.R., and Urbach, F.: Optical absorption studies of the volume photolysis of large silver chloride crystals. J. Phys. Chem. Solids 9, 217234 (1959).Google Scholar
Gurney, R.W. and Mott, N.F.: The theory of the photolysis of silver bromide and the photographic latent image. Proc. R. Soc., Ser. A 164, 151167 (1938).Google Scholar
Brown, F.C.: Electronic properties and band structure of the silver halides. J. Phys. Chem. 66, 23682376 (1962).Google Scholar
West, W. and Saunders, V.I.: Photochemical processes in thin single crystals of silver bromide: The distribution and behavior of latent image and photolytic silver in pure crystals and in crystals containing foreign cation. J. Phys. Chem. 63, 4554 (1959).Google Scholar
Xu, S., Zhou, H., Xu, J., and Li, Y.: Synthesis of size-tunable silver iodide nanowires in reverse micelles. Langmuir 18, 1050310504 (2002).Google Scholar
Verwey, J.F.: The photolysis of lead chloride and lead bromide. J. Phys. Chem. Solids 27, 468474 (1965).Google Scholar
Sheppard, S.E. and Vanselow, W.: The lattice energies of the silver halides and their photochemical decomposition. II. J. Phys. Chem. 34, 27192748 (1930).Google Scholar
Muray, A., Isaacson, M., and Adesida, I.: AlF3—A new very high resolution electron beam resist. Appl. Phys. Lett. 45, 589 (1984).Google Scholar
Geis, M.W., Randall, J.N., Deutsch, T.F., DeGraff, P.D., Krohn, K.E., and Stern, L.A.: Self-developing resist with submicrometer resolution and processing stability. Appl. Phys. Lett. 43, 74 (1983).Google Scholar
Langheinrich, W., Spangenberg, B., and Beneking, H.: Nanostructure fabrication using lithium fluoride films as an electron beam resist. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 10, 2868 (1992).Google Scholar
Kratschmer, E. and Isaacson, M.: Progress in self-developing metal fluoride resists. J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 5, 369 (1987).Google Scholar
Muray, A., Scheinfein, M., and Isaacson, M.: Radiolysis and resolution limits of inorganic halide resists. J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 3, 367 (1985).Google Scholar
Kuwabara, G. and Aoyagi, K.: Photoconductivity of some alkali halide crystals in the functional absorption range. J. Phys. Chem. Solids 22, 333338 (1961).CrossRefGoogle Scholar
Evans, B.L.: Optical property of animony triiodide. Proc. R. Soc., Ser. A 276, 136148 (1963).Google Scholar
Lefkowitz, I., Lowndes, R.P., and Yoffe, A.D.: Direct observation of excitons in some thallous halide single crystals. J. Phys. Chem. Solids 26, 11711175 (1965).Google Scholar
Baldini, G. and Bosacchi, B.: Optical properties of alkali-halide crystals. Phys. Rev. 166, 3 (1968).Google Scholar
Hsu, O.L. and Bates, C.W. Jr.: Excitonic emission from CsI (Na). Phys. Rev. B 15, 12 (1977).Google Scholar
Larruquert, J.I., Méndez, J.A., Aznárez, J.A., Tremsin, A.S., and Siegmund, O.H.W.: Optical properties and quantum efficiency of thin-film alkali halides in the far ultraviolet. Appl. Opt. 41, 13 (2002).Google Scholar
Campbell, L.W. and Gao, F.: Excited state electronic properties of sodium iodide and cesium iodide. J. Lumin. 137, 121131 (2013).Google Scholar
Komatsu, T., Kaifu, Y., Karasawa, T., and Iidoa, T.: Stacking fault and surface effects on exciton spectra in layered metal halides. Physica B+C 99, 318322 (1980).Google Scholar
Nakai, Y. and Teegarden, K.: Phtoconductivity in RbI and KI. J. Phys. Chem. Solids 22, 327331 (1961).Google Scholar
Wood, R.F.: The relaxed exciton in alkali halide crystal. Solid State Commun. 4, 3942 (1965).Google Scholar
Dillon, J.F. Jr., Kamimura, H., and Remeika, J.P.: Magneto-optical properties of ferromagnetic chromium trihalides. J. Phys. Chem. Solids 27, 15311549 (1966).Google Scholar
Ahn, K., Kremer, R.K., and Simon, A.: Effect of geometrical frustration on the magnetic properties of the triangular-layer system Tb2C2I2: A neutron diffraction investigation. J. Phys.: Condens. Matter 16, 11 (2004).Google Scholar
Kasten, A., Moller, P.H., and Schienle, M.: Magnetic ordering in Gdl2 . Solid State Commun. 51, 919921 (1984).CrossRefGoogle Scholar
Joseph, R.I. and Schlömann, E.: Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 36, 1579 (1965).CrossRefGoogle Scholar
Zhou, Y., Lu, H., Zu, X., and Gao, F.: Evidencing the existence of exciting half-metallicity in two-dimensional TiCl3 and VCl3 sheets. Sci. Rep. 6, 19407 (2016).Google Scholar
Lauque, P., Bendahan, M., Seguin, J-L., Pasquinelli, M., and Knauth, P.: Electrical properties of thin-films of the mixed ionic-electronic conductor CuBr—Influence of electrode metals and gaseous ammonia. J. Eur. Ceram. Soc. 19, 823826 (1999).Google Scholar
Lauque, P., Bendahan, M., Seguin, J-L., Ngo, K.A., and Knauth, P.: Highly sensitive and selective room temperature NH3 gas microsensor using an ionic conductor CuBr film. Anal. Chim. Acta 515, 279284 (2004).CrossRefGoogle Scholar
Lauer, U., Maier, J., and Gopel, W.: Conductance effects of ammonia on silver chloride boundary layers. Sens. Actuators, B 2, 125131 (1990).Google Scholar
Rao, N., Bleek, C.M.v.d., Schoonman, J., and Sorensen, O.T.: A novel temperature-gradient Na-b-alumina solid. Solid State Ionics 53–56, 3038 (1992).CrossRefGoogle Scholar
Ichida, H., Nakayama, M., and Nishimura, H.: Stimulated emission from exciton–exciton scattering in CuBr thin films. J. Lumin. 87–89, 235237 (2000).Google Scholar
Seguin, J-L., Bendahan, M., Lollmun, G., Pasquinelli, M., and Knauth, P.: Preparation of thin films of copper (I) bromide by r.f. sputtering: Morphology and electrical properties. Thin Solid Films 323, 3136 (1998).Google Scholar
Seguin, J-L., Bendahan, M., Lauque, P., Jacolin, C., Pasquinelli, M., and Knauth, P.: Mixed ionic-electronic conducting thin-films of CuBr a new active component for gas sensors. Sens. Actuators, A 74, 237241 (1999).Google Scholar
Maier, J. and Lauer, U.: Ionic contact equilibria in solids—Implications for batteries and sensors. Ber. Bunsen-Ges. Phys. Chem. 94, 973978 (1990).CrossRefGoogle Scholar
Maier, J.: Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171236 (1995).Google Scholar
Lauque, P., Laugier, J-M., Jacolin, C., Bendahan, M., Lemire, C., and Knauth, P.: Impedance analysis of CuBr films for ammonia gas detection. Sens. Actuators, B 87, 431436 (2002).Google Scholar
Lauque, P., Bendahan, M., Jacolin, C., Seguin, J-L., Pasquinelli, M., and Knauth, P.: Electrical properties and sensor characteristics for NH3 gas of sputtered CuBr films. Sens. Actuators, B 59, 216219 (1999).Google Scholar
Maier, J.: Electrical sensing of complex gaseous species by making use of acid-base properties. Solid State Ionics 62, 105111 (1993).CrossRefGoogle Scholar
Coetzer, J.: A new high energy density battery system. J. Power Sources 18, 377380 (1986).CrossRefGoogle Scholar
Benato, R., Cosciani, N., Crugnola, G., Sessa, S.D., Lodi, G., Parmeggiani, C., and Todeschini, M.: Sodium nickel chloride battery technology for large-scale stationary storage in the high voltage network. J. Power Sources 293, 127136 (2015).Google Scholar
Li, G., Lu, X., Kim, J.Y., Lemmon, J.P., and Sprenkle, V.L.: Improved cycling behavior of ZEBRA battery operated at intermediate temperature of 175 °C. J. Power Sources 249, 414417 (2014).Google Scholar
Bones, R.J., Coetzer, J., Galloway, R.C., and Teagle, D.A.: A sodium: Iron (II) chloride cell with a beta alumina electrolyte. J. Electrochem. Soc. 134, 23792382 (1987).Google Scholar
Brabec, C.J., Shaheen, S.E., Winder, C., and Denk, N.S.S.: Effect of LiF metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288 (2002).Google Scholar
Lu, X., Xia, G., Lemmon, J.P., and Yang, Z.: Advanced materials for sodium-beta alumina batteries—Status, challenges and perspectives. J. Power Sources 195, 24312442 (2010).Google Scholar
Frutschy, K., Chatwin, T., and Bull, R.: Cell overcharge testing inside sodium metal halide battery. J. Power Sources 291, 117125 (2015).Google Scholar
Prakash, J., Redey, L., and Vissers, D.R.: Dynamic performance measurements of Na/NiCl2 cells for electric vehicle applications. J. Power Sources 87, 195200 (2000).Google Scholar
Sanz, L., Palma, J., García-Quismondo, E., and Anderson, M.: The effect of chloride ion complexation on reversibility and redox potential of the Cu (II):Cu (I) couple for use in redox flow batteries. J. Power Sources 224, 278284 (2013).Google Scholar
Lu, X., Li, G., Kim, J.Y., Lemmon, J.P., Sprenkle, V.L., and Yang, Z.: The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries. J. Power Sources 215, 288295 (2012).Google Scholar
Gerovasili, E., May, J.F., and Sauer, D.U.: Experimental evaluation of the performance of the sodium metal chloride battery below usual operating temperatures. J. Power Sources 251, 137144 (2014).Google Scholar
Lu, X., Lemmon, J.P., Kim, J.Y., Sprenkle, V.L., and Yang, Z.: High energy density Na–S:NiCl2 hybrid battery. J. Power Sources 224, 312316 (2013).Google Scholar
Hosseinifar, M. and Petric, A.: High temperature versus low temperature Zebra (Na:NiCl2) cell performance. J. Power Sources 206, 402408 (2012).Google Scholar
Rijssenbeeka, J., Gao, Y., Zhong, Z., Croftc, M., Jisrawi, N., Ignatov, A., and Tsakalakos, T.: In situ X-ray diffraction of prototype sodium metal halide cells—Time and space electrochemical profiling. J. Power Sources 196, 23322339 (2011).Google Scholar
Longo, S., Antonucci, V., Cellura, M., and Ferraro, M.: Life cycle assessment of storage systems—The case study of a sodium:nickel chloride battery. J. Cleaner Prod. 85, 337346 (2014).Google Scholar
Eroglu, D. and West, A.C.: Modeling of reaction kinetics and transport in the positive porous electrode in a sodium–iron chloride battery. J. Power Sources 203, 211221 (2012).Google Scholar
van Zyl, A.: Review of the Zebra battery system development. Solid State Ionics 86–88, 883889 (1996).Google Scholar
Sudworth, J.L.: The sodim:nickle choloride (ZEBRA) battery. J. Power Sources 100, 149163 (2001).Google Scholar
Bowden, M.E., Alvine, K.J., Fulton, J.L., Lemmon, J.P., Lu, X., Webb-Robertson, B-J., Heald, S.M., Balasubramanian, M., Mortensen, D.R., Seidler, G.T., and Hess, N.J.: X-ray absorption measurements on nickel cathode of sodium-beta alumina batteries—Fe–Ni–Cl chemical associations. J. Power Sources 247, 517526 (2014).Google Scholar
Bohm, H. and Beyermann, G.: ZEBRA batteries, enhanced power by doping. J. Power Sources 84, 270274 (1990).Google Scholar
Galloway, R.C. and Haslam, S.: The ZEBRA electric vehicle battery—Power and energy improvements. J. Power Sources 80, 164167 (1999).Google Scholar
Hofstardter, R.: Alkali halide scintillation counters. Phys. Rev. 74, 100 (1948).Google Scholar
Milbrath, B.D., Peurrung, A.J., Bliss, M., and Weber, W.J.: Radiation detector materials—An overview. J. Mater. Res. 23, 10 (2008).Google Scholar
Roth, S. and Willig, W.R.: Lead iodide nuclear particle detectors. Appl. Phys. Lett. 18, 328 (1971).Google Scholar
van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Krämer, K., and Güdel, H.U.: Scintillation properties of LaCl3–Ce3+ crystals—Fast, efficient, and high-energy resolution scintillators. IEEE Trans. Nucl. Sci. 48, 3 (2001).CrossRefGoogle Scholar
Shah, K.S., Glodo, J., Klugerman, M., Higgins, W.M., Gupta, T., and Wong, P.: High energy resolution scintillation spectrometers. IEEE Trans. Nucl. Sci. 51, 5 (2004).Google Scholar
van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E., Krämer, K., and Güdel, H.U.: High energy resolution scintillator—Cs3+ activated LaBr3 . Appl. Phys. Lett. 79, 1573 (2001).Google Scholar
Birowosuto, M.D., Dorenbos, P., van Eijk, C.W.E., Krämer, K., and Güdel, H.U.: High light output scintillator for photodiode readout—LuI3:Ce3+ . J. Appl. Phys. 99, 123520 (2006).Google Scholar
Chen, X., Koiwasaki, T., and Yamanaka, S.: High-pressure synthesis and crystal structures of β-MNCl (M = Zr and Hf). J. Solid State Chem. 159, 8086 (2001).Google Scholar
Shamoto, S., Iizawa, K., Koiwasaki, T., Yasukawa, M., Yamanaka, S., Petrenko, O., Bennington, S.M., Yoshida, H., Ohoyama, K., Yamaguchi, Y., Qno, Y., Miyazaki, Y., and Kajitani, T.: Pressure effect and neutron scattering study on AxHfNCl. Physica C 341–348, 747748 (2000).Google Scholar
Kremer, R.K. and Simon, A.: Superconductivity and magnetoresistance in unusual layered rare earth halides and rare earth carbides. Curr. Appl. Phys. 4, 563569 (2004).Google Scholar
Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 6364 (2001).Google Scholar
Yamanaka, S. and Tou, H.: Superconductivity in electron-doped layer-structured nitride halides. Curr. Opin. Solid State Mater. Sci. 5, 545551 (2001).Google Scholar
Henn, R.W., Schnelle, W., Kremer, R.K., and Simon, A.: Bulk superconductivity at 10 K in the layered compounds Y2C2I2 and Y2C2Br2 . Phys. Rev. Lett. 77, 2 (1996).Google Scholar
Yamanaka, S., Kawaji, H., Hotehama, K-I., and Ohashi, M.: A new layerstructured nitride superconductor. Lithium-intercalated 8-zirconium nitride chloride, Li x ZrNCl. Adv. Mater. 8, 9 (1996).Google Scholar
Yamanaka, S., Hotehama, K-I., and Kawaji, H.: Superconductivity at 25.5 K in electron-doped layered hafnium nitride. Nature 392, 580583 (1998).Google Scholar
Yin, Z.P. and Kotliar, G.: Rational material design of mixed-valent high-T c superconductors. EPL 101, 2 (2013).Google Scholar
Maass, H., Bentmann, H., Seibel, C., Tusche, C., Eremeev, S.V., Peixoto, T.R., Tereshchenko, O.E., Kokh, K.A., Chulkov, E.V., Kirschner, J., and Reinert, F.: Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat. Commun. 7, 11621 (2016).Google Scholar
Bahramy, M.S., Arita, R., and Nagaosa, N.: Origin of giant bulk Rashba splitting—Application to BiTeI. Phys. Rev. B 84, 041202 (2011).Google Scholar
Landolt, G., Eremeev, S.V., Koroteev, Y.M., Slomski, B., Muff, S., Neupert, T., Kobayashi, M., Strocov, V.N., Schmitt, T., Aliev, Z.S., Babanly, M.B., Amiraslanov, I.R., Chulkov, E.V., Osterwalder, J., and Dil, J.H.: Disentanglement of surface and bulk Rashba spin splittings in noncentrosymmetric BiTeI. Phys. Rev. Lett. 109, 116403 (2012).Google Scholar
Lee, J.S., Schober, G.A., Bahramy, M.S., Murakawa, H., Onose, Y., Arita, R., Nagaosa, N., and Tokura, Y.: Optical response of relativistic electrons in the polar BiTeI semiconductor. Phys. Rev. Lett. 107, 117401 (2011).Google Scholar
Tran, M.K., Levallois, J., Lerch, P., Teyssier, J., Kuzmenko, A.B., Autes, G., Yazyev, O.V., Ubaldini, A., Giannini, E., van der Marel, D., and Akrap, A.: Infrared- and Raman-spectroscopy measurements of a transition in the crystal structure and a closing of the energy gap of BiTeI under pressure. Phys. Rev. Lett. 112, 047402 (2014).CrossRefGoogle Scholar
Tang, P., Yan, B., Cao, W., Wu, S-C., Felser, C., and Duan, W.: Weak topological insulators induced by the interlayer coupling—A first-principles study of stacked Bi2TeI. Phys. Rev. B 89, 041409 (2014).Google Scholar
Butler, C.J., Yang, P.Y., Sankar, R., Lien, Y.N., Lu, C.I., Chang, L.Y., Chen, C.H., Wei, C.M., Chou, F.C., and Lin, M.T.: Quasiparticle scattering in the Rashba semiconductor BiTeBr: The roles of spin and defect lattice site. ACS Nano 10, 93619369 (2016).Google Scholar
Landolt, G., Eremeev, S.V., Tereshchenko, O.E., Muff, S., Slomski, B., Kokh, K.A., Kobayashi, M., Schmitt, T., Strocov, V.N., Osterwalder, J., Chulkov, E.V., and Dil, J.H.: Bulk and surface Rashba splitting in single termination BiTeCl. New J. Phys. 15, 085022 (2013).Google Scholar
Chen, Y.L., Kanou, M., Liu, Z.K., Zhang, H.J., Sobota, J.A., Leuenberger, D., Mo, S.K., Zhou, B., Yang, S-L., Kirchmann, P.S., Lu, D.H., Moore, R.G., Hussain, Z., Shen, Z.X., Qi, X.L., and Sasagawa, T.: Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nat. Phys. 9, 704708 (2013).Google Scholar
Eremeev, S.V., Rusinov, I.P., Nechaev, I.A., and Chulkov, E.V.: Rashba split surface states in BiTeBr. New J. Phys. 15, 075015 (2013).Google Scholar
Kim, M., Im, J., Freeman, A.J., Ihm, J., and Jin, H.: Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl. Acad. Sci. U. S. A. 111, 69006904 (2014).Google Scholar
Fatuzzo, E., Harbeke, G., Merz, W.J., Nitsche, R., Roetschi, H., and Ruppet, N.: Ferroelectricity in SbSI. Phys. Rev. 127, 6 (1962).Google Scholar
Zhang, M., Pan, S., Yang, Z., Wang, Y., Su, X., Yang, A.Y., Huang, Z., Han, S., and Poeppelmeier, K.R.: BaClBF4—A new noncentrosymmetric pseudo-Aurivillius type material with transparency range from deep UV to middle IR and a high laser damage threshold. J. Mater. Chem. C 1, 4740 (2013).Google Scholar
Kurumaji, T., Seki, S., Ishiwata, S., Murakawa, H., Kaneko, Y., and Tokura, Y.: Magnetoelectric responses induced by domain rearrangement and spin structural change in triangular-lattice helimagnets NiI2 and CoI2 . Phys. Rev. B 87, 014429 (2013).Google Scholar
Aleksandrov, K.S., Voronov, V.N., Vtyurin, A.N., Goryainov, S.A., Zamkova, N.G., Zinenko, V.I., and Krylov, A.S.: Pressure-induced phase transitions in ScF3 crystal—Raman spectra and lattice dynamics. Ferroelectrics 284, 3145 (2003).Google Scholar
Yang, Q., Tang, K., Wang, C., Zuo, J., and Qian, Y.: The synthesis and characterization of Pb5S2I6 whiskers and tubules. Inorg. Chem. Commun. 6, 270274 (2003).Google Scholar
Yunakova, O.N., Miloslavskii, V.K., and Kovalenko, E.N.: UV absorption spectra of thin films of Cs2CdI4 and Rb2CdI4 ferroelectrics. Phys. Solid State 45, 888892 (2003).Google Scholar
Hydaradjan, W. and Voolless, F.: UV-induced kinetics of second harmonic generation in CdI2–Cu layered nanocrystals. Opt. Commun. 221, 115120 (2003).Google Scholar
Chen, H.W., Sakai, N., Ikegami, M., and Miyasaka, T.: Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. J. Phys. Chem. 6, 164169 (2015).Google Scholar
Ye, H.Y., Zhang, Y., Fu, D.W., and Xiong, R.G.: An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl3). Angew. Chem., Int. Ed. Engl. 53, 1124211247 (2014).Google Scholar
Filippetti, A., Delugas, P., Saba, M.I., and Mattoni, A.: Entropy-suppressed ferroelectricity in hybrid lead-iodide perovskites. J. Phys. Chem. 6, 49094915 (2015).Google Scholar
Jiang, Z.T., James, B.D., Liesegang, J., Tan, K.L., Gopalakrishnan, R., and Novak, I.: Investigation of the ferroelectric phase transition in (CH3NH3)HgCl3 . J. Phys. Chem. 56, 277283 (1995).Google Scholar
Kutes, Y., Ye, L., Zhou, Y., Pang, S., Huey, B.D., and Padture, N.P.: Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. 5, 33353339 (2014).Google Scholar
Liu, S., Zheng, F., Koocher, N.Z., Takenaka, H., Wang, F., and Rappe, A.M.: Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites. J. Phys. Chem. 6, 693699 (2015).Google Scholar
Pilania, G. and Lookman, T.: Electronic structure and biaxial strain in RbHgF3 perovskite and hybrid improper ferroelectricity in (Na,Rb)Hg2F6 and (K,Rb)Hg2F6 superlattices. Phys. Rev. B 90, 115121 (2014).Google Scholar
Pilania, G. and Uberuaga, B.P.: Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl6 . J. Appl. Phys. 117, 114103 (2015).Google Scholar
Utama, M.I.B., de la Mata, M., Magen, C., Arbiol, J., and Xiong, Q.: Twinning-, polytypism-, and polarity-induced morphological modulation in nonplanar nanostructures with van der Waals epitaxy. Adv. Funct. Mater. 23, 16361646 (2013).Google Scholar
Schulz, L.G.: Growth of alkali halide crystals from the vapor phase and from solution onto substrates of mica. Acta Crystallogr. 4, 483486 (1951).Google Scholar
Shigeta, J.: Oriented overgrowth of evaporated crystallites fluoride crystallites on cleavage surfaces of single crystals. J. Phys. Soc. Jpn. 11, 206210 (1956).Google Scholar
Rabbitt, L.J., Hampshire, M.J., Tomlinson, R.D., and Calderwood, J.H.: Low-frequency polarization in epitaxial NaCl thin films. In Conference on Electrical Insulation & Dielectric Phenomena—Annual Report 1972, Eager, G.S. Jr., ed. (IEEE, Washington D.C., 1972); pp. 359367.Google Scholar
Kiguchi, M., Entani, S., Saiki, K., Inoue, H., and Koma, A.: Two types of epitaxial orientations for the growth of alkali halide on fcc metal substrates. Phys. Rev. B 66, 155424 (2002).Google Scholar
Fölsch, S., Helms, A., Zöphel, S., Repp, J., Meyer, G., and Rieder, K.H.: Self-organized patterning of an insulator-on-metal system by surface faceting and selective growth: NaCl/Cu (211). Phys. Rev. Lett. 84, 123 (2000).Google Scholar
Fölsch, S., Helms, A., and Rieder, K.H.: Epitaxy of ionic insulators on a vicinal metal substrate: KCl and RbI on Cu (211). Appl. Surf. Sci. 162–163, 270274 (2000).Google Scholar
Bennewitz, R., Barwich, V., Bammerlin, M., Loppacher, C., Guggisberg, M., Baratoff, A., Meyer, E., and Güntherodt, H.J.: Ultrathin films of NaCl on Cu (111): A LEED and dynamic force microscopy study. Surf. Sci. 438, 289296 (1999).Google Scholar
Bennewitz, R., Foster, A.S., Kantorovich, L.N., Bammerlin, M., Loppacher, C., Schär, S., Guggisberg, M., Meyer, E., and Shluger, A.L.: Atomically resolved edges and kinks of NaCl islands on Cu (111): Experiment and theory. Phys. Rev. B 62, 2074 (2000).Google Scholar
Hebenstreit, W., Schmid, M., Redinger, J., Podloucky, R., and Varga, P.: Bulk terminated NaCl (111) on aluminum: A polar surface of an ionic crystal? Phys. Rev. Lett. 85, 5376 (2000).Google Scholar
Hebenstreita, W., Redingerb, J., Horozovaa, Z., Schmida, M., Podlouckyc, R., and Vargaa, P.: Atomic resolution by STM on ultra-thin films of alkali halides: Experiment and local density calculations. Surf. Sci. 424, L321L328 (1999).Google Scholar
Wolf, D.: Reconstruction of NaCl surfaces from a dipolar solution to the Madelung problem. Phys. Rev. Lett. 68, 3315 (1992).Google Scholar
Repp, J., Fölsch, S., Meyer, G., Drude, P., and Rieder, K-H.: Ionic films on vicinal metal surfaces: Enhanced binding due to charge modulation. Phys. Rev. Lett. 86, 252 (2001).Google Scholar
Fölsch, S., Helms, A., Riemann, A., Repp, J., Meyer, G., and Rieder, K.H.: Nanoscale surface patterning by adsorbate-induced faceting and selective growth: NaCl on Cu (211). Surf. Sci. 497, 113126 (2002).Google Scholar
Kiguchi, M., Saiki, K., Sasaki, T., Iwasawa, Y., and Koma, A.: Heteroepitaxial growth of LiCl on Cu (001). Phys. Rev. B 63, 205418 (2001).Google Scholar
Kiguchi, M., Inoue, H., Saiki, K., Sasaki, T., Iwasawa, Y., and Koma, A.: Electronic structure of alkali halide–metal interface: LiCl (001)/Cu (001). Surf. Sci. 522, 8489 (2003).CrossRefGoogle Scholar
Yang, M.H. and Flynn, C.P.: Growth of alkali halides from molecular beams: Global growth characteristics. Phys. Rev. Lett. 62, 24762479 (1989).Google Scholar
Yang, M.H. and Flynn, C.P.: Growth of alkali halides by molecular-beam epitaxy. Phys. Rev. B 41, 85008508 (1990).Google Scholar
Klauser, R., Kubota, M., Murata, Y., Oshima, M., Yamada Maruo, Y., Kawamura, T., and Miyahara, T.: Electronic properties of ionic insulators on semiconductor surfaces: Alkali fluorides on GaAs (100). Phys. Rev. B 40, 33013305 (1989).CrossRefGoogle ScholarPubMed
Klauser, R., Oshima, M., Sugahara, H., Murata, Y., and Kato, H.: RbF as reactive and dipole interlayers between the Ge/GaAs interface. Phys. Rev. B 43, 4879 (1991).Google Scholar
Saiki, K.: Fabrication and characterization of epitaxial films of ionic materials. Appl. Surf. Sci. 113, 917 (1997).Google Scholar
Kiguchi, M., Saiki, K., and Koma, A.: Heteroepitaxial growth of alkali halide solid solution on GaAs (100). J. Cryst. Growth 237–239(Part 1), 244248 (2002).Google Scholar
Kiguchi, M., Yokoyama, T., Tsuduki, T., Terada, S., Kitajima, Y., and Ohta, T.: Heteroepitaxial growth of KCl on a cleaved (001) face of KBr studied by extended X-ray-absorption fine structure. Surf. Sci. 433–435, 595599 (1999).Google Scholar
Kiguchi, M., Saiki, K., and Koma, A.: Effects of anharmonicity of ionic bonds on the lattice distortion at the interface of alkali halide heterostructures. Surf. Sci. 470, 8188 (2000).Google Scholar
Chen, P., Kuttipillai, P.S., Wang, L., and Lunt, R.R.: Homoepitaxial growth of metal halide crystals investigated by reflection high-energy electron diffraction. Sci. Rep. 7, 40542 (2017).Google Scholar
Sáfrán, G., Geszti, O., Radnóczi, G., Barna, P.B., and Tóth, K.: TEM study of the structure and morphology of AgI crystals formed on Ag (001), (011) and (111) thin films. Thin Solid Films 259, 96104 (1995).Google Scholar
Cochrane, G.: Epitaxial growth of layers of hexagonal silver iodide. J. Cryst. Growth 7, 109112 (1970).Google Scholar
Brady, L.E., Castle, J.W., and Hamilton, J.F.: Epitaxial silver halide films. Appl. Phys. Lett. 13, 7678 (1968).CrossRefGoogle Scholar
Chen, L., Xie, W., Wang, G., Bhat, I., Zhang, S., Goyal, A., and Lu, T-M.: Heteroepitaxy of large grain Ge film on cube-textured Ni (001) foils through CaF2 buffer layer. Thin Solid Films 603, 428434 (2016).Google Scholar
Maruo, Y.Y., Oshima, M., Waho, T., and Kawamura, T.: Photoemission and RHEED studies of bonding properties at the CaF2/GaAs (001) interface. Jpn. J. Appl. Phys. 28, L299 (1989).Google Scholar
Sugiyama, M. and Oshima, M.: MBE growth of fluorides. Microelectron. J. 27, 361382 (1996).Google Scholar
Colbow, K.M., Tiedje, T., Rogers, D., and Eberhardt, W.: Photoemission study of the formation of the CaF2/GaAs (100) interface. Phys. Rev. B 43, 96729677 (1991).Google Scholar
Waho, T. and Saeki, H.: Electrical properties of (CaSr)F2/GaAs (111)B interfaces grown by molecular beam epitaxy: Realization of unpinning. Jpn. J. Appl. Phys. 30, 221227 (1991).Google Scholar
Engelhardt, M.A., Höchst, H., Stair, K., Zajac, J., and Chambers, F.: Photoemission study of Ca1−x Sr x F2 films grown by MBE on GaAs (100). Phys. Scr. 41, 896900 (1990).Google Scholar
Santiago, F., Chu, T.K., and Stumborg, M.F.: Process for forming epitaxial BaF2 on GaAs. U.S. Patent US5435264 A, 1995.Google Scholar
Weiss, W., Kasper, K., Herrmann, K.H., Schmeisser, D., and Göpel, W.: Surface morphology of epitaxial CaF2 and SrF2 layers grown onto InP (001) studied by atomic force microscopy and low-energy electron diffraction. Surf. Sci. 268, 319324 (1992).Google Scholar
Sokolov, N.S. and Suturin, S.M.: MBE growth of calcium and cadmium fluoride nanostructures on silicon. Appl. Surf. Sci. 175–176, 619628 (2001).Google Scholar
Tiwari, A.N., Floeder, W., Blunier, S., Zogg, H., and Weibel, H.: Molecular beam epitaxial growth of (100) oriented CdTe on Si (100) using BaF2–CaF2 as a buffer. Appl. Phys. Lett. 57, 11081110 (1990).Google Scholar
Bujor, M. and Vook, R.W.: Epitaxial poly- and monocrystalline CaF2 films. J. Appl. Phys. 40, 53735382 (1969).Google Scholar
Tong, W.M., Snyder, E.J., Stanley Williams, R., Yanase, A., Segawa, Y., and Anderson, M.S.: Atomic force microscope studies of CuCl island formation on CaF2 (111) substrates. Surf. Sci. Lett. 277, L63L69 (1992).Google Scholar
Chen, W., Dumas, M., Ahsan, S., Kahn, A., Duke, C.B., and Paton, A.: Epitaxial growth and characterization of CuCl (110)/GaP (110). J. Vac. Sci. Technol., A 10, 20712076 (1992).Google Scholar
Wake, T., Saiki, K., and Koma, A.: Epitaxial growth and surface structure of cuprous halide thin films. J. Vac. Sci. Technol., A 18, 536542 (2000).Google Scholar
Yanase, A. and Segawa, Y.: Nucleation and morphology evolution in the epitaxial growth of CuCl on MgO (001) and CaF2 (111). Surf. Sci. 357, 885890 (1996).Google Scholar
Yanase, A. and Segawa, Y.: Two different in-plane orientations in the growths of cuprous halides on MgO (001). Surf. Sci. 329, 219226 (1995).Google Scholar
Yanase, A. and Segawa, Y.: Stranski-krastanov growth of CuCl on MgO (001). Surf. Sci. 367, L1L7 (1996).Google Scholar
Yanase, A., Segawa, Y., Mihara, M., Tong, W.M., and Williams, R.S.: Heteroepitaxial growth of CuCl on MgO (001) substrates. Surf. Sci. 278, L105L109 (1992).Google Scholar
Wu, M., Guo, Q., and Møller, P.J.: Ultrathin films of CuCl on TiO2 (110): Electronic structure and surface reconstruction. Vacuum 41, 14181421 (1990).Google Scholar
Ai, R., Guan, X., Li, J., Yao, K., Chen, P., Zhang, Z., Duan, X., and Duan, X.: Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2, WSe2) van der Waals heterostructures, and patterned arrays. ACS Nano 11, 34133419 (2017).Google Scholar
Bengel, H., Cantow, H.J., Magonov, S.N., Hillebrecht, H., Thiele, G., Liang, W., and Whangbo, M.H.: Tip-force induced surface corrugation in layered transition metal trichlorides MCl3 (M = Ru, Mo, Rh, Ir). Surf. Sci. 343, 95103 (1995).Google Scholar
Ha, S.T., Liu, X.F., Zhang, Q., Giovanni, D., Sum, T.C., and Xiong, Q.H.: Synthesis of organic–inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838844 (2014).Google Scholar
Nagamune, Y., Takeyama, S., Miura, N., Minagawa, T., and Misu, A.: Very thin PbI2 single crystals grown by a hot wall technique. Appl. Phys. Lett. 50, 13371339 (1987).Google Scholar
Ueno, T., Yamamoto, H., Saiki, K., and Koma, A.: Van der Waals epitaxy of metal dihalide. Appl. Surf. Sci. 113, 3337 (1997).Google Scholar
Kurisu, H., Yamamoto, S., Sueoka, O., and Matsuura, M.: Preparation and quantum confinement effect of PbI2CdI2 superlattices. Solid State Commun. 99, 541545 (1996).Google Scholar
Wang, Y., Sun, Y-Y., Zhang, S., Lu, T-M., and Shi, J.: Band gap engineering of a soft inorganic compound PbI2 by incommensurate van der Waals epitaxy. Appl. Phys. Lett. 108, 013105 (2016).Google Scholar
Takeyama, S., Watanabe, K., Ichihara, M., Suzuki, K., and Miura, N.: Van der Waals epitaxial growth of thin BiI3 films on PbI2 and CdI2 substrates by a hot wall method. J. Appl. Phys. 68, 27352738 (1990).Google Scholar
Mowbray, A. and Jones, R.G.: Homo- and hetero-iodide thin film growth on InSb (001): Low-temperature iodide formation and epitaxial growth of CdI2 . Appl. Surf. Sci. 48, 2738 (1991).Google Scholar
Suzuki, T. and Souda, R.: Structure analysis of CsCl deposited on the MgO (001) surface by coaxial impact collision atom scattering spectroscopy (CAICASS). Surf. Sci. 442, 283290 (1999).Google Scholar
Yoshikawa, G., Kiguchi, M., Ueno, K., Koma, A., and Saiki, K.: Visible light photoemission and negative electron affinity of single-crystalline CsCl thin films. Surf. Sci. 544, 220226 (2003).Google Scholar
Kiguchi, M., Entani, S., Saiki, K., and Koma, A.: Atomic and electronic structure of CsBr film grown on LiF and KBr (001). Surf. Sci. 523, 7379 (2003).Google Scholar
Wang, Y., Shi, Y., Xin, G., Lian, J., and Shi, J.: Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des. 15, 47414749 (2015).Google Scholar
Zhang, Q., Su, R., Liu, X., Xing, J., Sum, T.C., and Xiong, Q.: High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 62386245 (2016).Google Scholar
Wang, Y., Sun, X., Shivanna, R., Yang, Y., Chen, Z., Guo, Y., Wang, G-C., Wertz, E., Deschler, F., Cai, Z., Zhou, H., Lu, T-M., and Shi, J.: Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett. 16, 79747981 (2016).Google Scholar
Chen, J., Fu, Y., Samad, L., Dang, L., Zhao, Y., Shen, S., Guo, L., and Jin, S.: Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 17, 460466 (2017).Google Scholar
Wang, Y., Chen, Z., Deschler, F., Sun, X., Lu, T-M., Wertz, E.A., Hu, J-M., and Shi, J.: Epitaxial halide perovskite lateral double heterostructure. ACS Nano 11, 33553364 (2017).Google Scholar
Niu, L., Liu, X., Cong, C., Wu, C., Wu, D., Chang, T.R., Wang, H., Zeng, Q., Zhou, J., Wang, X., Fu, W., Yu, P., Fu, Q., Najmaei, S., Zhang, Z., Yakobson, B.I., Tay, B.K., Zhou, W., Jeng, H.T., Lin, H., Sum, T.C., Jin, C., He, H., Yu, T., and Liu, Z.: Controlled synthesis of organic/inorganic van der Waals solid for tunable light-matter interactions. Adv. Mater. 27, 78007808 (2015).Google Scholar
Ha, S-T., Shen, C., Zhang, J., and Xiong, Q.: Laser cooling of organic–inorganic lead halide perovskites. Nat. Photonics 10, 115121 (2016).Google Scholar
Liu, J., Xue, Y., Wang, Z., Xu, Z-Q., Zheng, C., Weber, B., Song, J., Wang, Y., Lu, Y., Zhang, Y., and Bao, Q.: Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano 10, 35363542 (2016).Google Scholar
Farrow, R.F.C., Parkin, S.S.P., and Roche, K.P.: Epitaxial growth of rare earths on rare earth fluorides and rare earth fluorides on rare earths: Two new epitaxial systems accessed by MBE. MRS Proc. 103, 205210 (1987).Google Scholar
Farrow, R.F.C., Parkin, S.S.P., Speriosu, V.S., Bezinge, A., and Segmuller, A.P.: Structural and magnetic characterization of rare earth and transition metal films grown on epitaxial buffer films on semiconductor. MRS Proc. 151, 203211 (1989).Google Scholar
Farrow, R.F.C., Toney, M.F., Hermsmeier, B.D., Parkin, S.S.P., and Wiesler, D.G.: Synchrotron X-ray diffraction studies of the lattice and magnetic structure of epitaxial Dy films in LaF3/Dy/LaF3 sandwiches. J. Appl. Phys. 70, 44654468 (1991).Google Scholar