Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-13T23:30:41.616Z Has data issue: false hasContentIssue false

A review of in situ surface functionalization of gallium nitride via beaker wet chemistry

Published online by Cambridge University Press:  08 June 2015

Brady L. Pearce
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
Stewart J. Wilkins
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
Tania Paskova
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA; and Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
Albena Ivanisevic*
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
a)Address all correspondence to this author. e-mail:
Get access


This review focuses on in situ functionalization of gallium nitride (GaN) with different adsorbates in the presence of an etchant. The low-temperature aqueous nature of this process provides a safe, environmentally friendly technique for tailoring the semiconductor's properties for various applications. Surface binding to GaN relies on a native oxide layer or direct attachment to the metal center present on the etched surface. The specifics of the binding mechanism are based on the functional groups present on the adsorbate. The effects of the GaN surface polarity and quality on the modification approach are analyzed. The review summarizes the alteration of GaN properties after the in situ treatment. Quantitative data until now have shown changes in morphological, surface chemical, optical, electronic, and aqueous stability properties. The review concludes with a short outlook on future studies associated with this surface modification approach.

Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Stutzmann, M., Garrido, J.A., Eickhoff, M., and Brandt, M.S.: Direct biofunctionalization of semiconductors: A survey. Phys. Status Solidi A 203, 34243437 (2006).Google Scholar
Makowski, M.S., Kim, S., Gaillard, M., Janes, D., Manfra, M.J., Bryan, I., Sitar, Z., Arellano, C., Xie, J., Collazo, R., and Ivanisevic, A.: Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications. Appl. Phys. Lett. 102, 074102 (2013).CrossRefGoogle ScholarPubMed
Morkoc, H.: Handbook of Nitride Semiconductors and Devices, Material Properties, Physics and Growth, Vol. 1 (John Wiley & Sons, Weinheim, 2009).Google Scholar
Arisio, C., Cassou, C.A., and Lieberman, M.: Loss of siloxane monolayers from GaN surfaces in water. Langmuir 29, 51455149 (2013).CrossRefGoogle ScholarPubMed
Hofstetter, M., Howgate, J., Schmid, M., Schoell, S., Sachsenhauser, M., Adiguzel, D., Stutzmann, M., Sharp, I.D., and Thalhammer, S.: In vitro bio-functionality of gallium nitride sensors for radiation biophysics. Biochem. Biophys. Res. Commun. 424, 348353 (2012).Google Scholar
Jewett, S.A., Makowski, M.S., Andrews, B., Manfra, M.J., and Ivanisevic, A.: Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater. 8, 728733 (2012).Google Scholar
Huang, M.L., Chang, Y.C., Chang, C.H., Lee, Y.J., Chang, P., Kwo, J., Wu, T.B., and Hong, M.: Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3 . Appl. Phys. Lett. 87, 252104 (2005).CrossRefGoogle Scholar
Schwarz, S.U., Cimalla, V., Eichapfel, G., Himmerlich, M., Krischok, S., and Ambacher, O.: Thermal functionalization of GaN surfaces with 1-Alkenes. Langmuir 29, 62966301 (2013).Google Scholar
Bermudez, V.M.: Adsorption and photodissociation of 4-haloanilines on GaN(0001). Surf. Sci. 519, 173184 (2002).Google Scholar
Bermudez, V.M.: Functionalizing the GaN(0001)-(1x1) surface I. The chemisorption of aniline. Surf. Sci. 499, 109123 (2002).Google Scholar
Bermudez, V.M.: Functionalizing the GaN(0001)-(1x1) surface II. Chemisorption of 3-pyrroline. Surf. Sci. 499, 124134 (2002).CrossRefGoogle Scholar
Bermudez, V.M. and Long, J.P.: Chemisorption of H2O on GaN(0001). Surf. Sci. 450, 98105 (2000).Google Scholar
Bermudez, V.M.: Investigation of the initial chemisorption and reaction of fluorine (XeF2) with the GaN(0001)-(1x1) surface. Appl. Surf. Sci. 119, 147159 (1997).Google Scholar
Bermudez, V.M.: Adsorption of 1-octanethiol on the GaN(0001) surface. Langmuir 19, 68136819 (2003).Google Scholar
Peczonczyk, S.L., Mukherjee, J., Carim, A.I., and Maldonado, S.: Wet chemical functionalization of III-V semiconductor surfaces: Alkylation of gallium arsenide and gallium nitride by a grignard reaction sequence. Langmuir 28, 46724682 (2012).Google Scholar
Makowski, M.S., Zemlyanov, D.Y., and Ivanisevic, A.: Olefin metathesis reaction on GaN (0001) surfaces. Appl. Surf. Sci. 257, 46254632 (2011).Google Scholar
Makowski, M.S., Zemlyanov, D.Y., Lindsey, J.A., Bernhard, J.C., Hagen, E.M., Chan, B.K., Petersohn, A.A., Medow, M.R., Wendel, L.E., Chen, D.F., Canter, J.M., and Ivanisevic, A.: Covalent attachment of a peptide to the surface of gallium nitride. Surf. Sci. 605, 14661475 (2011).Google Scholar
Kim, H., Colavita, P.E., Metz, K.M., Nichols, B.M., Sun, B., Uhlrich, J., Wang, X.Y., Kuech, T.F., and Hamers, R.J.: Photochemical functionalization of gallium nitride thin films with molecular and biomolecular layers. Langmuir 22, 81218126 (2006).CrossRefGoogle ScholarPubMed
Guo, D.J., Abdulagatov, A.I., Rourke, D.M., Bertness, K.A., George, S.M., Lee, Y.C., and Tan, W.: GaN nanowire functionalized with atomic layer deposition techniques for enhanced immobilization of biomolecules. Langmuir 26, 1838218391 (2010).Google Scholar
Ito, T., Forman, S.M., Cao, C., Li, F., Eddy, C.R., Mastro, M.A., Holm, R.T., Henry, R.L., Hohn, K.L., and Edgar, J.H.: Self-assembled monolayers of alkylphosphonic acid on GaN substrates. Langmuir 24, 66306635 (2008).Google Scholar
Lueangchaichaweng, W., Brooks, N.R., Fiorilli, S., Gobechiya, E., Lin, K.F., Li, L.; Parres-Esclapez, S., Javon, E., Bals, S., Van Tendeloo, G., Martens, J.A., Kirschhock, C.E.A., Jacobs, P.A., and Pescarmona, P.P.: Gallium oxide nanorods: Novel, template-free synthesis and high catalytic activity in epoxidation reactions. Angew. Chem., Int. Ed. 53, 15851589 (2014).Google Scholar
Jung, Y., Ahn, J., Baik, K.H., Kim, D., Pearton, S.J., Ren, F., and Kim, J.: Chemical etch characteristics of N-face and Ga-face GaN by phosphoric acid and potassium hydroxide solutions. J. Electrochem. Soc. 159, H117H120 (2012).Google Scholar
Sheen, C.W., Shi, J.X., Maartensson, J., Parikh, A.N., and Allara, D.L.: A new class of organized self-assembled monolayers: Alkane thiols on gallium arsenide(100). J. Am. Chem. Soc. 114, 15141515 (1992).Google Scholar
Bain, C.D.: A new class of self-assembled monolayers: Organic thiols on gallium arsenide. Adv. Mater. 4, 591594 (1992).Google Scholar
Paniagua, S.A., Hotchkiss, P.J., Jones, S.C., Marder, S.R., Mudalige, A., Marrikar, F.S., Pemberton, J.E., and Armstrong, N.R.: Phosphonic acid modification of indium-tin oxide electrodes: Combined XPS/UPS/contact angle studies. J. Phys. Chem. C 112, 78097817 (2008).Google Scholar
Nakamura, S.: Current status of GaN-based solid-state lighting. MRS Bull. 34, 101 (2009).Google Scholar
Amano, H.: Metalorganic chemical vapor deposition of nitrides. In Handbook of Crystal Growth, Thin Films and Epitaxy: Basic Techniques, Vol. III, Nishinaga, T. and Kuech, T.F. eds.; Elsevier: Amsterdam, 2015; pp. 683.CrossRefGoogle Scholar
Bickermann, M. and Paskova, T.: Vapor transport growth of wide bandgap materials. In Handbook of Crystal Growth: Bulk Crystal Growth, Vol. II, Nishinaga, T. and Rudolph, P., eds.; Elsevier: Amsterdam, 2015; pp. 621.Google Scholar
Koblmuller, G., Lang, J.R., Young, E.C., and Speck, J.S.: Molecular beam epitaxy of nitrides for advanced electronic materials. In Handbook of Crystal Growth, Thin Films and Epitaxy: Basic Techniques, Vol. III, Nishinaga, T. and Kuech, T.F. eds.; Elsevier: Amsterdam, 2015; pp. 705.CrossRefGoogle Scholar
Hite, J.K., Garces, N.Y., Goswami, R., Mastro, M.A., Kub, F.J., and Eddy, C.R.: Selective switching of GaN polarity on Ga-polar GaN using atomic layer deposited Al2O3 . Appl. Phys. Express 7, 025502 (2014).Google Scholar
Cruz, C., Keller, S., Mates, T.E., Mishra, U.K., and DenBaars, S.P.: Crystallographic orientation dependence of dopant and impurity incorporation in GaN films grown by metalorganic chemical vapor deposition. J. Cryst. Growth 311, 3817 (2009).Google Scholar
Browne, D.A., Young, E.C., Lang, J.R., Hurni, C.A., and Speck, J.S.: Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy. J. Vac. Sci. Technol., A 30, 041513 (2012).Google Scholar
Wilkins, S.J., Greenough, M., Arellano, C., Paskova, T., and Ivanisevic, A.: In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching. Langmuir 30, 20382046 (2014).CrossRefGoogle ScholarPubMed
Sandroff, C.J., Nottenburg, R.N., Bischoff, J.C., and Bhat, R.: Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar-transistor by surface chemical passivation. Appl. Phys. Lett. 51, 3335 (1987).Google Scholar
Lunt, S.R., Santangelo, P.G., and Lewis, N.S.: Passivation of GaAs surface recombination with organic thiols. J. Vac. Sci. Technol., B 9, 23332336 (1991).CrossRefGoogle Scholar
Adlkofer, K. and Tanaka, M.: Stable surface coating of gallium arsenide with octadecylthiol monolayers. Langmuir 17, 42674273 (2001).CrossRefGoogle Scholar
Ding, X., Moumanis, K., Dubowski, J.J., Tay, L., and Rowell, N.L.: Fourier-transform infrared and photoluminescence spectroscopies of self-assembled monolayers of long-chain thiols on (001) GaAs. J. Appl. Phys. 99, 054701 (2006).Google Scholar
Losurdo, M., Wu, P.C., Kim, T.H., Bruno, G., and Brown, A.S.: Cysteamine-based functionalization of InAs Surfaces: Revealing the critical role of oxide interactions in biasing attachment. Langmuir 28, 12351245 (2012).Google Scholar
Stine, R. and Petrovykh, D.Y.: Oriented self-assembled monolayers of bifunctional molecules on InAs. J. Electron Spectrosc. Relat. Phenom. 172, 4246 (2009).Google Scholar
Lovrić, J., Bazzi, H., Cuie, Y., Fortin, G.A.; Winnik, F., and Maysinger, D.: Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83, 377385 (2005).Google Scholar
Wilkins, S.J., Paskova, T., and Ivanisevic, A.: Effect of etching with cysteamine assisted phosphoric acid on gallium nitride surface oxide formation. J. Appl. Phys. 114, 064907 (2013).Google Scholar
Paramonov, P.B., Paniagua, S.A., Hotchkiss, P.J., Jones, S.C., Armstrong, N.R., Marder, S.R., and Bredas, J.L.: Theoretical characterization of the indium tin oxide surface and of its binding sites for adsorption of phosphonic acid monolayers. Chem. Mater. 20, 51315133 (2008).Google Scholar
Chen, J.X., Ruther, R.E., Tan, Y.Z., Bishop, L.M., and Hamers, R.J.: Molecular adsorption on ZnO(10-10) single-crystal surfaces: Morphology and charge transfer. Langmuir 28, 1043710445 (2012).CrossRefGoogle Scholar
Hotchkiss, P.J., Li, H., Paramonov, P.B., Paniagua, S.A., Jones, S.C., Armstrong, N.R., Bredas, J.L., and Marder, S.R.: Modification of the surface properties of indium tin oxide with benzylphosphonic acids: A joint experimental and theoretical study. Adv. Mater. 21, 44964501 (2009).Google Scholar
Sharma, A., Kippelen, B., Hotchkiss, P.J., and Marder, S.R.: Stabilization of the work function of indium tin oxide using organic surface modifiers in organic light-emitting diodes. Appl. Phys. Lett. 93, 163308 (2008).Google Scholar
Brennan, B.J., Portoles, M.J.L., Liddell, P.A., Moore, T.A., Moore, A.L., and Gust, D.: Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 15, 1660516614 (2013).Google Scholar
Wilkins, S.J., Paskova, T., and Ivanisevic, A.: Modified surface chemistry, potential, and optical properties of polar gallium nitride via long chained phosphonic acids. Appl. Surf. Sci. 327, 498503 (2015).Google Scholar
Berg, N.G., Nolan, M.W., Paskova, T., and Ivanisevic, A.: Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution. Langmuir 30, 1547715485 (2014).Google Scholar
Hotchkiss, P.J., Malicki, M., Giordano, A.J., Armstrong, N.R., and Marder, S.R.: Characterization of phosphonic acid binding to zinc oxide. J. Mater. Chem. 21, 31073112 (2011).CrossRefGoogle Scholar
Wilkins, S.J., Paskova, T., and Ivanisevic, A.: Modulated optical properties of nonpolar gallium nitride via surface in-situ functionalization with cysteamine assisted phosphoric acid. Appl. Surf. Sci. 295, 207213 (2014).CrossRefGoogle Scholar
Cho, C.P., Chu, C.C., Chen, W.T., Huang, T.C., and Tao, Y.T.: Molecular modification on dye-sensitized solar cells by phosphonate self-assembled monolayers. J. Mater. Chem. 22, 29152921 (2012).CrossRefGoogle Scholar
Richards, D., Zemlyanov, D., and Ivanisevic, A.: Assessment of the passivation capabilities of two different covalent chemical modifications on GaP(100). Langmuir 26, 81418146 (2010).CrossRefGoogle ScholarPubMed
Slavin, J.W.J., Jarori, U., Zemlyanov, D., and Ivanisevic, A.: Characterization of amino acid adlayers on InAs surfaces using X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 172, 4753 (2009).CrossRefGoogle Scholar
Su, R.G., Liu, H.B., Kong, T., Song, Q., Li, N., Jin, G., and Cheng, G.S.: Tuning surface wettability of InxGa(1-x)N nanotip arrays by phosphonic acid modification and photoillumination. Langmuir 27, 1322013225 (2011).Google Scholar
Paskova, T., Hanser, A., Preble, E., Evans, K., Kroger, R., Tuomisto, F., Kersting, R., Alcorn, R., Ashley, S., Pagel, C., Valcheva, E., Paskov, P.P., and Monemar, B.: Defect and emission distributions in bulk GaN grown in polar and nonpolar directions: A comparative analysis. Proc. SPIE 6894, 68940D-1-68940D-7 3 (2008).Google Scholar
Hotchkiss, P.J., Jones, S.C., Paniagua, S.A., Sharma, A., Kippelen, B., Armstrong, N.R., and Marder, S.R.: The modification of indium tin oxide with phosphonic acids: Mechanism of binding, tuning of surface properties, and potential for use in organic electronic applications. Acc. Chem. Res. 45, 337346 (2012).CrossRefGoogle ScholarPubMed
Frausto da Silva, J.J.R. and Williams, R.J.P.: The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd ed. (Oxford University Press, Oxford, 2001).Google Scholar
Zaouk, A., Salvetat, E., Sakaya, J., Maury, F., and Constant, G.: Various chemical mechanisms for the crystal-growth of III-V semiconductors using coordination-compounds as starting material in the MOCVD process. J. Cryst. Growth 55, 135144 (1981).Google Scholar
Company, C.R.: CRC Handbook of Chemistry and Physics, 95 ed.; Haynes, W.M., (2014).Google Scholar
Hart, M.M. and Adamson, R.H.: Antitumor activity and toxicity of salts of inorganic group IIIa metals: Aluminum, gallium, indium, and thallium. Proc. Natl. Acad. Sci. U. S. A. 68, 16231626 (1971).Google Scholar
Foster, C.M., Collazo, R., Sitar, Z., and Ivanisevic, A.: Aqueous stability of Ga- and N-polar gallium nitride. Langmuir 29, 216220 (2013).CrossRefGoogle ScholarPubMed
Takeno, N.: Atlas of Eh-pH Diagrams: Intercomparison of Thermodynamic Databases. National Institute of Advanced Industrial Science and Technology, Research Center for Deep Geological Environments, Japan, 2005.Google Scholar