Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T02:40:59.007Z Has data issue: false hasContentIssue false

Reaction pathways and optoelectronic characterization of single-phase Ag2ZnSnS4 nanoparticles

Published online by Cambridge University Press:  07 November 2019

Xianyi Hu
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Susannah Pritchett-Montavon
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Carol Handwerker*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Rakesh Agrawal*
Affiliation:
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*
a)Address all correspondence to these authors. e-mail: handwerker@purdue.edu
Get access

Abstract

Sputtered thin films of Ag2ZnSnS4 (AZTS) have shown promising semiconducting properties in spite of the films containing SnS2, SnSx, or ZnS as impurity phases. In this study, reaction pathways were identified to produce single-phase AZTS nanoparticles as precursors for forming dense, single-phase films. The morphology, composition, and phase evolution during nanoparticle formation in an oleylamine-based solvothermal reaction process were determined using surface-enhanced Raman spectroscopy (SERS) and transmission and scanning transmission electron microscope (TEM/STEM). The reaction pathways for AZTS nanoparticles were found to be different from Cu2ZnSnS4 nanoparticles in oleylamine, which may explain the difficulty in creating (Ag, Cu)2ZnSnS4 solid solutions in the nanoparticle synthesis. The single-phase AZTS nanoparticle films have a band gap (2.16 eV) slightly higher than sputtered films, and photoelectrochemical (PEC) measurements demonstrated a current of 0.1 mA/cm2 in K2SO4 solution even as porous nanoparticle films, suggesting the potential of this material in solar energy conversion when converted into a dense film.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xin, H., Katahara, J.K., Braly, I.L., and Hillhouse, H.W.: 8% efficient Cu2ZnSn(S, Se)4 solar cells from redox equilibrated simple precursors in DMSO. Adv. Energy Mater. 4, 1301823 (2014).CrossRefGoogle Scholar
Miskin, C.K., Yang, W-C., Hages, C.J., Carter, N.J., Joglekar, C.S., Stach, E.A., and Agrawal, R.: 9.0% efficient Cu2ZnSn(S, Se)4 solar cells from selenized nanoparticle inks. Prog. Photovolt. Res. Appl. 23, 654 (2014).CrossRefGoogle Scholar
Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y., and Mitzi, D.B.: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2013).CrossRefGoogle Scholar
Valakh, M.Y., Kolomys, O.F., Ponomaryov, S.S., Yukhymchuk, V.O., Babichuk, I.S., Izquierdo-Roca, V., Saucedo, E., Perez-Rodriguez, A., Morante, J.R., Schorr, S., and Bodnar, I.V.: Raman scattering and disorder effect in Cu2ZnSnS4. Phys. Status Solidi RRL 7, 258 (2013).CrossRefGoogle Scholar
Schelhas, L.T., Stone, K.H., Harvey, S.P., Zakhidov, D., Salleo, A., Teeter, G., Repins, I.L., and Toney, M.F.: Point defects in Cu2ZnSnSe4 (CZTSe): Resonant X-ray diffraction study of the low-temperature order/disorder transition. Phys. Status Solidi B 254, 1700156 (2017).CrossRefGoogle Scholar
Mendis, B.G., Shannon, M.D., Goodman, M.C., Major, J.D., Claridge, R., Halliday, D.P., and Durose, K.: Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy. Prog. Photovolt. Res. Appl. 22, 24 (2012).CrossRefGoogle Scholar
Hages, C.J., Redinger, A., Levcenko, S., Hempel, H., Koeper, M.J., Agrawal, R., Greiner, D., Kaufmann, C.A., and Unold, T.: Identifying the real minority carrier lifetime in nonideal semiconductors: A case study of kesterite materials. Adv. Energy Mater. 7, 1700167 (2017).CrossRefGoogle Scholar
Koeper, M.J., Hages, C.J., Li, J.V., Levi, D., and Agrawal, R.: Metastable defect response in CZTSSe from admittance spectroscopy. Appl. Phys. Lett. 111, 142105 (2017).CrossRefGoogle Scholar
Gokmen, T., Gunawan, O., Todorov, T.K., and Mitzi, D.B.: Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103, 103506 (2013).CrossRefGoogle Scholar
Hages, C.J., Koeper, M.J., and Agrawal, R.: Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying. Sol. Energy Mater. Sol. Cells 145, 342 (2016).CrossRefGoogle Scholar
Hages, C.J., Levcenco, S., Miskin, C.K., Alsmeier, J.H., Abou-Ras, D., Wilks, R.G., Br, M., Unold, T., and Agrawal, R.: Improved performance of Ge-alloyed CZTGeSSe thin-film solar cells through control of elemental losses. Prog. Photovolt. Res. Appl. 23, 376 (2013).CrossRefGoogle Scholar
Guo, Q., Ford, G.M., Yang, W-C., Hages, C.J., Hillhouse, H.W., and Agrawal, R.: Enhancing the performance of CZTSSe solar cells with Ge alloying. Sol. Energy Mater. Sol. Cells 105, 132 (2012).CrossRefGoogle Scholar
Ford, G.M., Guo, Q., Agrawal, R., and Hillhouse, H.W.: Earth abundant element Cu2Zn(Sn1−xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% efficient device fabrication. Chem. Mater. 23, 2626 (2011).CrossRefGoogle Scholar
Su, Z., Tan, J.M.R., Li, X., Zeng, X., Batabyal, S.K., and Wong, L.H.: Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency. Adv. Energy Mater. 5, 1500682 (2015).CrossRefGoogle Scholar
Kumar, J. and Ingole, S.: Structural and optical properties of (AgxCu1−x)2ZnSnS4 thin films synthesised via solution route. J. Alloys Compd. 727, 1089 (2017).CrossRefGoogle Scholar
Gershon, T., Lee, Y.S., Antunez, P., Mankad, R., Singh, S., Bishop, D., Gunawan, O., Hopstaken, M., and Haight, R.: Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1−x)2ZnSnSe4. Adv. Energy Mater. 6, 1502468 (2016).CrossRefGoogle Scholar
Gong, W., Tabata, T., Takei, K., Morihama, M., Maeda, T., and Wada, T.: Crystallographic and optical properties of (Cu, Ag)2ZnSnS4 and (Cu, Ag)2ZnSnSe4 solid solutions. Phys. Status Solidi C 12, 700 (2015).CrossRefGoogle Scholar
Chagarov, E., Sardashti, K., Kummel, A.C., Lee, Y.S., Haight, R., and Gershon, T.S.: Ag2ZnSn(S, Se)4: A highly promising absorber for thin film photovoltaics. J. Chem. Phys. 144, 104704 (2016).CrossRefGoogle ScholarPubMed
Yuan, Z-K., Chen, S., Xiang, H., Gong, X-G., Walsh, A., Park, J-S., Repins, I., and Wei, S-H.: Engineering solar cell absorbers by exploring the band alignment and defect disparity: The case of Cu- and Ag-based kesterite compounds. Adv. Funct. Mater. 25, 6733 (2015).CrossRefGoogle Scholar
Gershon, T., Sardashti, K., Gunawan, O., Mankad, R., Singh, S., Lee, Y.S., Ott, J.A., Kummel, A., and Haight, R.: Photovoltaic device with over 5% efficiency based on an n-type Ag2ZnSnSe4 absorber. Adv. Energy Mater. 6, 1601182 (2016).CrossRefGoogle Scholar
Guo, Q., Ford, G.M., Yang, W-C., Walker, B.C., Stach, E.A., Hillhouse, H.W., and Agrawal, R.: Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 132, 17384 (2010).CrossRefGoogle ScholarPubMed
Guo, Q., Ford, G.M., Hillhouse, H.W., and Agrawal, R.: Sulfide nanocrystal inks for dense Cu(In1−xGax)(S1−ySey)2 absorber films and their photovoltaic performance. Nano Lett. 9, 3060 (2009).CrossRefGoogle Scholar
Hages, C.J., Koeper, M.J., Miskin, C.K., Brew, K.W., and Agrawal, R.: Controlled grain growth for high performance nanoparticle-based kesterite solar cells. Chem. Mater. 28, 7703 (2016).CrossRefGoogle Scholar
Cheng, K-W. and Hong, S-W.: Influences of silver and zinc contents in the stannite Ag2ZnSnS4 photoelectrodes on their photoelectrochemical performances in the saltwater solution. ACS Appl. Mater. Interfaces 10, 22130 (2018).CrossRefGoogle ScholarPubMed
Li, K., Chai, B., Peng, T., Mao, J., and Zan, L.: Synthesis of multicomponent sulfide Ag2ZnSnS4 as an efficient photocatalyst for H2 production under visible light irradiation. RSC Adv. 3, 253 (2013).CrossRefGoogle Scholar
Tsuji, I., Shimodaira, Y., Kato, H., Kobayashi, H., and Kudo, A.: Novel stannite-type complex sulfide photocatalysts AI2–Zn–AIV–S4(AI = Cu and Ag; AIV = Sn and Ge) for hydrogen evolution under visible-light irradiation. Chem. Mater. 22, 1402 (2010).CrossRefGoogle Scholar
Ma, C., Guo, H., Zhang, K., Li, Y., Yuan, N., and Ding, J.: The preparation of Ag2ZnSnS4 homojunction solar cells. Mater. Lett. 207, 209 (2017).CrossRefGoogle Scholar
Guo, H., Ma, C., Zhang, K., Jia, X., Li, Y., Yuan, N., and Ding, J.: The fabrication of Cd-free Cu2ZnSnS4–Ag2ZnSnS4 heterojunction photovoltaic devices. Sol. Energy Mater. Sol. Cells 178, 146 (2018).CrossRefGoogle Scholar
Gautam, G.S., Senftle, T.P., and Carter, E.A.: Understanding the effects of Cd and Ag doping in Cu2ZnSnS4 solar cells. Chem. Mater. 30, 4543 (2018).CrossRefGoogle Scholar
Sasamura, T., Osaki, T., Kameyama, T., Shibayama, T., Kudo, A., Kuwabata, S., and Torimoto, T.: Solution-phase synthesis of stannite-type Ag2ZnSnS4 nanoparticles for application to photoelectrode materials. Chem. Lett. 41, 1009 (2012).CrossRefGoogle Scholar
Huang, P-C., Wang, H-I., Brahma, S., Wang, S-C., and Huang, J-L.: Synthesis and characteristics of layered SnS2 nanostructures via hot injection method. J. Cryst. Growth 468, 162 (2017).CrossRefGoogle Scholar
Tan, J.M.R., Lee, Y.H., Pedireddy, S., Baikie, T., Ling, X.Y., and Wong, L.H.: Understanding the synthetic pathway of a single-phase quaternary semiconductor using surface-enhanced Raman scattering: A case of wurtzite Cu2ZnSnS4 nanoparticles. J. Am. Chem. Soc. 136, 6684 (2014).CrossRefGoogle Scholar
Liao, H-C., Jao, M-H., Shyue, J-J., Chen, Y-F., and Su, W-F.: Facile synthesis of wurtzite copper–zinc–tin sulfide nanocrystals from plasmonic djurleite nuclei. J. Mater. Chem. A 1, 337 (2013).CrossRefGoogle Scholar
Hou, B., Benito-Alifonso, D., Kattan, N., Cherns, D., Galan, M.C., and Fermín, D.J.: Initial stages in the formation of Cu2ZnSn(S, Se)4 nanoparticles. Chem. - Eur. J. 19, 15847 (2013).CrossRefGoogle ScholarPubMed
Collord, A.D. and Hillhouse, H.W.: Composition control and formation pathway of CZTS and CZTGS nanocrystal inks for kesterite solar cells. Chem. Mater. 27, 1855 (2015).CrossRefGoogle Scholar
Lide, D.R.: CRC Handbook of Chemistry and Physics, Vol. 5 (2004); p. 25.Google Scholar
van Embden, J., Bourgeois, L., Della Gaspera, E., Waddington, L., Yin, Y., Medhekar, N.V., Jasieniak, J.J., and Chesman, A.S.R.: The formation mechanism of janus nanostructures in one-pot reactions: The case of Ag–Ag8GeS6. J. Mater. Chem. A 4, 7060 (2016).CrossRefGoogle Scholar
Zhou, H., Hsu, W-C., Duan, H-S., Bob, B., Yang, W., Song, T-B., Hsu, C-J., and Yang, Y.: CZTS nanocrystals: A promising approach for next generation thin film photovoltaics. Energy Environ. Sci. 6, 2822 (2013).CrossRefGoogle Scholar
Yang, W-C., Miskin, C.K., Hages, C.J., Hanley, E.C., Handwerker, C.A., Stach, E.A., and Agrawal, R.: Kesterite Cu2ZnSn(S, Se)4 absorbers converted from metastable, wurtzite-derived Cu2ZnSnS4 nanoparticles. Chem. Mater. 26, 3530 (2014).CrossRefGoogle Scholar
Thomson, J.W., Nagashima, K., Macdonald, P.M., and Ozin, G.A.: From sulfur–amine solutions to metal sulfide nanocrystals: Peering into the oleylamine–sulfur black box. J. Am. Chem. Soc. 133, 5036 (2011).CrossRefGoogle ScholarPubMed
Li, Z., Lui, A.L.K., Lam, K.H., Xi, L., and Lam, Y.M.: Phase-selective synthesis of Cu2ZnSnS4 nanocrystals using different sulfur precursors. Inorg. Chem. 53, 10874 (2014).CrossRefGoogle ScholarPubMed
Zou, Y., Su, X., and Jiang, J.: Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: The role of reactivity between Zn and S. J. Am. Chem. Soc. 135, 18377 (2013).CrossRefGoogle ScholarPubMed
Balow, R.B., Miskin, C.K., Abu-Omar, M.M., and Agrawal, R.: Synthesis and characterization of Cu3(Sb1−xAsx)S4 semiconducting nanocrystal alloys with tunable properties for optoelectronic device applications. Chem. Mater. 29, 573 (2017).CrossRefGoogle Scholar
Yang, W-C., Miskin, C.K., Carter, N.J., Agrawal, R., and Stach, E.A.: Compositional inhomogeneity of multinary semiconductor nanoparticles: A case study of Cu2ZnSnS4. Chem. Mater. 26, 6955 (2014).CrossRefGoogle Scholar