Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-25T10:57:23.089Z Has data issue: false hasContentIssue false

Rare-earth transition-metal intermetallic compounds produced via self-propagating, high-temperature synthesis

Published online by Cambridge University Press:  31 January 2011

David P. Adams
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

Several binary intermetallic compounds—each containing a rare-earth (RE) element paired with a transition metal (TM)—were prepared by self-propagating, high-temperature synthesis (SHS). Thin multilayers, composed of alternating Sc or Y (RE element) and Ag, Cu, or Au (TM), were first deposited by direct current magnetron sputtering. Once the initially distinct layers were stimulated and caused to mix, exothermic reactions propagated to completion. X-ray diffraction revealed that Sc/Au, Sc/Cu, Y/Au, and Y/Cu multilayers react in vacuum to form single-phase, cubic B2 structures. Multilayers containing Ag and a RE metal formed cubic B2 (RE)Ag and a minority (RE)Ag2 phase. The influence of an oxygen-containing environment on the reaction dynamics and the formation of phase were investigated, providing evidence for the participation of secondary combustion reactions during metal-metal SHS. High-speed photography demonstrated reaction propagation speeds that ranged from 0.1–40.0 m/s (dependent on material system and foil design). Both steady and spin-like reaction modes were observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gschneidner, K., Russell, A., Pecharsky, A., Morris, J., Zhang, Z.H., Lograsso, T., Hsu, D., Lo, C.H.C., Ye, Y.Y., Slager, A., Kesse, D.A family of ductile intermetallic compounds. Nat. Mater. 2, 587 (2003)Google Scholar
2.Morris, J.R., Ye, Y.Y., Lee, Y.B., Harmon, B.N., Gschneidner, K.A., Russell, A.M.Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds. Acta Mater. 52, 4849 (2004)CrossRefGoogle Scholar
3.Russell, A.M., Zhang, Z., Lograsso, T.A., Lo, C.C.H., Pecharsky, A.O., Morris, J.R., Ye, Y., Gschneidner, K.A., Slager, A.J.Mechanical properties of single crystal YAg. Acta Mater. 52, 4033 (2004)Google Scholar
4.Zhang, Z., Russell, A.M., Biner, S.B., Gschneidner, K.A., Lo, C.C.H.Fracture toughness of polycrystalline YCu, DyCu, and YAg. Intermetallics 13, 559 (2005)CrossRefGoogle Scholar
5.Chen, G.L., Liu, C.T.Moisture induced environmental embrittlement of intermetallics. Int. Mater. Rev. 46, 253 (2001)Google Scholar
6.Fleischer, R.L., Zabala, R.J.Mechanical-properties of diverse binary high-temperature intermetallic compounds. Metall. Mater. Trans. A 21, 2709 (1990)CrossRefGoogle Scholar
7.Miracle, D.B.Overview No. 104—The physical and mechanical properties of NiAl. Acta Metall. Mater. 41, 649 (1993)CrossRefGoogle Scholar
8.Chen, L., Peng, P., Han, S.C.Study on point defect structures of B2-YX (X=Cu, Rh Ag, In) intermetallic compound and their basic physics properties. Rare Met. Mater. Eng. 36, 2089 (2007)Google Scholar
9.Chen, Q., Biner, S.B.Stability of perfect dislocations in rare-earth intermetallic compounds: YCu, YAg and YZn. Acta Mater. 53, 3215 (2005)Google Scholar
10.Xie, S., Russell, A.M., Becker, A.T., Gschneidner, K.A.Dislocation core structures in YAg, a ductile B2 CsCl-type intermetallic compound. Scr. Mater. 58, 1066 (2008)Google Scholar
11.Gschneidner, K.A., Calderwood, F.W.The Ag-Y (silver-yttrium) system. J. Phase Equilib. 4, 377 (1983)Google Scholar
12.Gschneidner, K.A., Calderwood, F.W.The Ag-Sc (silver-scandium) system. J. Phase Equilib. 4, 375 (1983)Google Scholar
13.Okamoto, H.Cu-Y (copper-yttrium). J. Phase Equilib. Diffus. 19, 398 (1998)Google Scholar
14.Okamoto, H.Au-Sc (gold-scandium). J. Phase Equilib. Diffus. 19, 599 (1998)Google Scholar
15.Saccone, A., Delfino, S., Maccio, D., Ferro, R.Phase equilibria investigation of the yttrium-gold system. J. Chem. Phys. 94, 948 (1997)Google Scholar
16.Turchanin, M.A.Phase equilibria and thermodynamics of binary copper systems with 3d-metals. I. The copper-scandium system. Powder Metall. Met. Ceram. 45, 143 (2006)Google Scholar
17.Chao, C.C., Duwez, P., Luo, H.L.CsCl-type compounds in binary alloys of rare-earth metals with gold and silver. J. Appl. Phys. 34, 1971 (1963)Google Scholar
18.Gschneidner, K.A., Mudryk, Y., Becker, A.T., Larson, J.L.The Crystal Structures of Some RM and RM2 Compounds (Where R = Rare Earth Metal and M = Non-rare Earth Metal) (Pergamon-Elsevier Science Ltd., Genoa, Italy 2008)810Google Scholar
19.Morsi, K.Review: Reaction synthesis processing of Ni-Al intermetallic materials. Mater. Sci. Eng., A 299, 1 (2001)CrossRefGoogle Scholar
20.Yi, H.C., Moore, J.J.Combustion synthesis of TiNi intermetallic compounds. 1: Determination of heat of fusion of TiNi and heat-capacity of liquid TiNi. J. Mater. Sci. 24, 3449 (1989)Google Scholar
21.Yi, H.C., Petric, A., Moore, J.J.Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 27, 6797 (1992)Google Scholar
22.Bowen, C.R., Derby, B.Selfpropagating high temperature synthesis of ceramic materials. Br. Ceram. Trans. 96, 25 (1997)Google Scholar
23.Meyers, M.A., Olevsky, E.A., Ma, J., Jamet, M.Combustion synthesis/densification of an Al2O3-TiB2 composite. Mater. Sci. Eng., A 311, 83 (2001)Google Scholar
24.Feng, H.J., Moore, J.J.In situ combustion synthesis of dense ceramic and ceramic-metal interpenetrating phase composites. Metall. Mater. Trans. B 26, 265 (1995)CrossRefGoogle Scholar
25.Ringuede, A., Bronine, D., Frade, J.R.Assessment of Ni/YSZ anodes prepared by combustion synthesis. Solid State Ionics 146, 219 (2002)CrossRefGoogle Scholar
26.Yi, H.C., Woodger, T.C., Moore, J.J., Guigne, J.Y.The effect of gravity on the combustion synthesis of metal-ceramic composites. Metall. Mater. Trans. B 29, 889 (1998)Google Scholar
27.Moore, J.J., Feng, H.J.Combustion synthesis of advanced materials. 1: Reaction parameters. Prog. Mater. Sci. 39, 243 (1995)Google Scholar
28.Moore, J.J., Feng, H.J.Combustion synthesis of advanced materials. 2: Classification, applications and modeling. Prog. Mater. Sci. 39, 275 (1995)Google Scholar
29.Yi, H.C., Moore, J.J.Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. J. Mater. Sci. 25, 1159 (1990)Google Scholar
30.Westwood, W.D.Sputter Deposition Vol. 2 (American Vacuum Society, New York 2003)Google Scholar
31.Barbee, T.W., Weihs, T. U.S. Patent No. 5538795-A (1996)Google Scholar
32.Adams, D.P., Hodges, V.C., Bai, M.M., Jones, J.E., Rodriguez, M.A., Buchheit, T., Moore, J.J.Exothermic reactions in Co/Al nanolaminates. J. Appl. Phys. 104, 043502 (2008)Google Scholar
33.Adams, D.P., Rodriguez, M.A., Tigges, C.P., Kotula, P.G.Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films. J. Mater. Res. 21, 3168 (2006)CrossRefGoogle Scholar
34.Blobaum, K.J., Van Heerden, D., Gavens, A.J., Weihs, T.P.Al/Ni formation reactions: Characterization of the metastable Al9Ni2 phase and analysis of its formation. Acta Mater. 51, 3871 (2003)CrossRefGoogle Scholar
35.Duckham, A., Spey, S.J., Wang, J., Reiss, M.E., Weihs, T.P., Besnoin, E., Knio, O.M.Reactive nanostructured foil used as a heat source for joining titanium. J. Appl. Phys. 96, 2336 (2004)Google Scholar
36.Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E., Weihs, T.P.Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 87, 1255 (2000)Google Scholar
37.Reiss, M.E., Esber, C.M., Van Heerden, D., Gavens, A.J., Williams, M.E., Weihs, T.P.Self-propagating formation reactions in Nb/Si multilayers. Mater. Sci. Eng., A 261, 217 (1999)Google Scholar
38.Ustinov, A., Olikhovska, L., Melnichenko, T., Shyshkin, A.Effect of overall composition on thermally induced solid-state transformations in thick EB PVD Al/Ni multilayers. Surf. Coat. Technol. 202, 3832 (2008)Google Scholar
39.Swiston, A.J., Besnoin, E., Duckham, A., Knio, O.M., Weihs, T.P., Hufnagel, T.C.Thermal and microstructural effects of welding metallic glasses by self-propagating reactions in multilayer foils. Acta Mater. 53, 3713 (2005)Google Scholar
40.Swiston, A.J., Hufnagel, T.C., Weihs, T.P.Joining bulk metallic glass using reactive multilayer foils. Scr. Mater. 48, 1575 (2003)Google Scholar
41.Tong, M.S., Sturgess, D., Tu, K.N., Yang, J.M.Solder joints fabricated by explosively reacting nanolayers. Appl. Phys. Lett. 92, 144101 (2008)Google Scholar
42.Trenkle, J.C., Weihs, T.P., Hufnagel, T.C.Fracture toughness of bulk metallic glass welds made using nanostructured reactive multilayer foils. Scr. Mater. 58, 315 (2008)Google Scholar
43.Wang, J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M.E., Knio, O.M., Powers, M., Whitener, M., Weihs, T.P.Room-temperature soldering with nanostructured foils. Appl. Phys. Lett. 83, 3987 (2003)Google Scholar
44.Wang, J., Besnoin, E., Duckham, A., Spey, S.J., Reiss, M.E., Knio, O.M., Weihs, T.P.Joining of stainless-steel specimens with nanostructured Al/Ni foils. J. Appl. Phys. 95, 248 (2004)Google Scholar
45.Wang, J., Besnoin, E., Knio, O.M., Weihs, T.P.Effects of physical properties of components on reactive nanolayer joining. J. Appl. Phys. 97, 114307 (2005)Google Scholar
46.Colinet, C.The Thermodynamic Properties of Rare-earth Metallic Systems (Elsevier Science Sa Lausanne, Helsinki, Finland 1994)409422Google Scholar
47.Lide, D.R.CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL 2004)Google Scholar
48.Miedema, A.R., Deboer, F.R., Boom, R.Model predictions for enthalpy of formation of transition-metal alloys. Calphad 1, 341 (1977)CrossRefGoogle Scholar
49.Grigoriev, I.S., Meilikhov, E.Z.Handbook of Physical Quantities (CRC Press, Boca Raton, FL 1997)Google Scholar
50.Armstrong, R.Models for gasless combustion in layered materials and random-media. Combust. Sci. Technol. 71, 155 (1990)Google Scholar
51.Picard, Y.N., McDonald, J.P., Friedmann, T.A., Yalisove, S.M., Adams, D.P.Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates. Appl. Phys. Lett. 103, 104103 (2008)Google Scholar
52.McDonald, J.P., Hodges, V.C., Jones, E.D., Adams, D.P.Direct observation of spinlike reaction fronts in planar energetic multilayer foils. Appl. Phys. Lett. 94, 034102 (2009)Google Scholar
53.Filonenko, A.K., Vershennikov, V.I.Mechanism of spin burning of titanium in nitrogen. Combust. Explos. 11, 301 (1975)Google Scholar
54.Gennari, S., Anselmi-Tamburini, U., Maglia, F., Spinolo, G., Munir, Z.A.Simulation study of wave propagation instabilities for the combustion synthesis of transition metals aluminides. J. Phys. Chem. B 110, 7144 (2006)Google Scholar
55.Gennari, S., Tamburini, U.A., Maglia, F., Spinolo, G., Munir, Z.A.A new approach to the modeling of SHS reactions: Combustion synthesis of transition metal aluminides. Acta Mater. 54, 2343 (2006)Google Scholar
56.Ivleva, T.P., Merzhanov, A.G.Three-dimensional modes of unsteady solid-flame combustion. Chaos: An Interdisciplinary Journal of Nonlinear Science 13, 80 (2003)CrossRefGoogle Scholar
57.Li, H.P.Banded structures in unstable combustion synthesis. J. Mater. Res. 10, 1379 (1995)Google Scholar
58.Zhang, S., Munir, Z.A.Spin combustion in the nickel-silicon system. J. Mater. Sci. 27, 5789 (1992)CrossRefGoogle Scholar
59.Aldred, A.T.Intermediate phases involving scandium. Transactions of the Metallurgical Society of Aime 224, 1082 (1962)Google Scholar
60.Huber, E.J., Head, E.L., Fitzgibbon, G.C., Holley, C.E.Heat of formation of scandium oxide. J. Phys. Chem. 67, 1731 (1963)Google Scholar
61.Huber, E.J., Head, E.L., Holley, C.E.The heat of combustion of yttrium. J. Phys. Chem. 61, 497 (1957)Google Scholar
62.Jenkins, R., Snyder, R.L.Introduction to X-ray Powder Diffraction (Wiley Interscience, New York 1996)Google Scholar