Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-13T17:37:10.672Z Has data issue: false hasContentIssue false

Possible evidence for the stabilization of β–carbon nitride by high-energy ball milling

Published online by Cambridge University Press:  31 January 2011

Y. Fahmy
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695-7907
T. D. Shen
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695-7907
D. A. Tucker
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695-7907
R. L. Spontak
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695-7907
C. C. Koch*
Affiliation:
Materials Science and Engineering Department, North Carolina State University, Raleigh, North Carolina 27695-7907
*
c)Address all correspondence to this author. e-mail: CARL_KOCH@NCSU.EDU
Get access

Abstract

The possibility of stabilizing the theoretically predicted β–C3N4 phase by high-energy ball milling is investigated. Charges of graphitic carbon were milled with and without minor alloying additions under different atmospheric media, namely gas and/or liquid phases of nitrogen, air, or ammonia. Milling was performed at either of two energy levels for periods of up to 48 h. The β–C3N4 phase was found to exist as small crystallites in a matrix of primarily amorphous carbon at volume fractions estimated between 5 and 10 at.%. High-resolution electron diffraction and x-ray diffraction indicate that the crystalline nature of the C3N4 phase corresponds with a hexagonal lattice with a = 6.46 Å and c/a = 0.374, which are within 2% of the theoretically calculated lattice parameter values. Analysis of electron energy-loss spectroscopy (EELS), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectra verify the presence of chemically bonded carbon and nitrogen with chemical states reflecting combined sp2 and sp3 hybridization. Chemical analysis confirms nitrogen enrichment at levels consistent with the C3N4 stoichiometry and the estimated degree of stabilization. The possible mechanism(s) responsible for the stabilization of the β–C3N4 phase are briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.DeCarli, P. S. and Jamieson, J. C., Science 133, 1821 (1961).CrossRefGoogle Scholar
2.Coleburn, N. L. and Forbes, J. W., J. Chem. Phys. 48 (2), 555 (1968).CrossRefGoogle Scholar
3.Cohen, M.L., Phys. Rev. B 32, 7988 (1985).CrossRefGoogle Scholar
4.Wixom, M.R., J. Am. Ceram. Soc. 73 (7), 1973 (1990).CrossRefGoogle Scholar
5.Cohen, M.L., Phys. Scr. T1, 5 (1982).CrossRefGoogle Scholar
6.Knittle, E., Wentzcovitch, R.M., Jeanloz, R., and Cohen, M. L., Nature 337, 349 (1989).CrossRefGoogle Scholar
7.Liu, A.Y. and Cohen, M. L., Science 245, 341 (1989).CrossRefGoogle Scholar
8.Sung, C. and Sung, M., Mater. Chem. Phys. 43 (1), 1 (1996).CrossRefGoogle Scholar
9.Yu, K.M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A.Y., and Wu, I. C., Phys. Rev. B 49 (7), 5034 (1994).CrossRefGoogle Scholar
10.Yinan, L., Zebo, Z., Sishen, X., and Guozhen, Y., Chem. Phys. Lett. 247 (3), 253 (1995).Google Scholar
11.Niu, C., Lu, Y.Z., and Lieber, C. M., Science 261, 334 (1993).CrossRefGoogle Scholar
12.Liu, A.Y. and Wentzcovitch, R. M., Phys. Rev. B 50 (14), 10362 (1994).CrossRefGoogle Scholar
13.Gouzman, I., Brener, R., and Hoffman, A., Thin Solid Films 253, 90 (1994).CrossRefGoogle Scholar
14.Bousetta, A., Lu, M., Bensaoula, A., and Schultz, A., Appl. Phys. Lett. 65 (6), 696 (1994).CrossRefGoogle Scholar
15.Marton, D., Boyd, K. J., Al-Bayati, A. H., Todorov, S. S., and Rabalis, J. W., Phys. Rev. Lett. 73 (1), 118 (1994).CrossRefGoogle Scholar
16.Rossi, F., André, B., van Veen, A., Mijnarends, P. E., Schut, H., Labohm, F., Delplancke, M.P., Dunlop, H., and Anger, E., Thin Solid Films 253, 85 (1994).CrossRefGoogle Scholar
17.Li, D., Cutiongco, E., Chung, Y., Wong, M., and Sproul, W.D., Diam. Films Technol. 5 (5), 261 (1995).Google Scholar
18.Ren, Z., Du, Y., Ying, Z., Li, F., Lin, J., Ren, Y., and Zong, X., Nucl. Instrum. Methods in Phys. Res. B 117 (3), 249 (1996).Google Scholar
19.Chen, M.Y., Lin, X., Dravid, V.P., Chung, Y.W., Wong, M.S., and Sproul, W.D., Surf. Coat. Technol. 54/55, 360 (1992).CrossRefGoogle Scholar
20.Veprek, S., Weidmann, J., and Glatz, F., J. Vac. Sci. Technol. A 13 (6), 2914 (1995).CrossRefGoogle Scholar
21.Li, D., Chung, Y. H., Wong, M. S., and Sproul, W. D., J. Appl. Phys. 74 (1), 219 (1993).CrossRefGoogle Scholar
22.Haller, E.E., United States Patent 5,110,679 (1992).Google Scholar
23.Nguyen, J. H. and Jeanloz, R., Mater. Sci. Eng. A A209 (1–2), 23 (1996).CrossRefGoogle Scholar
24.Benjamin, J. S., Metall. Trans. 1, 2943 (1970).CrossRefGoogle Scholar
25.Benjamin, J. S., Sci. Am. 40, 234 (1976).Google Scholar
26.Gessinger, G. H., Metall. Trans. 7A, 1203 (1976).CrossRefGoogle Scholar
27.Benjamin, J. S. and Bromford, M. J., Metall. Trans. 8A, 1301 (1977).CrossRefGoogle Scholar
28.Gilman, P. S. and Nix, W. D., Metall. Trans. 12A, 813 (1981).CrossRefGoogle Scholar
29.Matteazzi, P. and Le Caër, G., J. Am. Ceram. Soc. 74 (6), 1382 (1991).CrossRefGoogle Scholar
30.Le Caër, G., Bauer, E., Grosse, , Pianelli, A., Bouzy, E., and Matteazzi, P., J. Mater. Sci. 25, 4726 (1990).CrossRefGoogle Scholar
31.Nikolov, J. I., Calka, A., and Williams, J. S., Nanostruct. Mater. 6, 401 (1995).CrossRefGoogle Scholar
32.Sundaresan, R. and Froes, F.H., J. Metals 39 (8), 22 (1987).Google Scholar
33.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
34.Schwarz, R. B., Mater. Sci. Technol. 97, 71 (1988).Google Scholar
35.Schultz, L., Mater. Sci. Technol. 97, 15 (1988).Google Scholar
36.Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
37.Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarborough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
38.Koch, C. C., Scripta Mater. 34 (1), 21 (1996).CrossRefGoogle Scholar
39.Kaczmarek, W. A. and Onyszkiewicz, I., Mater. Sci. Forum 179–181, 195 (1995).Google Scholar
40.McDermott, B. T. and Koch, C. C., Scripta Metall. 20, 669 (1986).CrossRefGoogle Scholar
41.Koch, C.C. and Kim, M. S., J. de Physique 46, C8573 (1985).CrossRefGoogle Scholar
42.Tidjani, M., Lachter, J., Kabre, T. S., and Bragg, R. H., Carbon 24 (4), 447 (1986).CrossRefGoogle Scholar
43.Guo, Y., Gong, Z.F., Mo, H.D., Wang, S.X., Yang, B.Z., Wu, T.J., Bian, Z.H., Tang, X. W., Xiong, C.S., Zhu, J. S., Xiao, J. Y., Shen, T. D., Quan, M.X., and Wang, J. T., Phys. Lett. A 193, 298 (1994).CrossRefGoogle Scholar
44.Tang, J., Zhao, W., Li, L., Falster, A. U., Simmons, W.B. Jr, Zhou, W.L., Ikuhara, Y., and Zhang, J. H., J. Mater. Res. 11, 733 (1996).CrossRefGoogle Scholar
45.Ogawa, I., Yoshida, H., and Kobayashi, K., J. Mater. Sci. 16, 2181 (1981).CrossRefGoogle Scholar
46.Hermann, H., Schubert, Th., Gruner, W., and Mattern, N., Nanostruct. Mater. 8 (2), 215 (1997).CrossRefGoogle Scholar
47.McCarty, K. F. and Medlin, D. L., Diam. Relat. Mater. 6 (9), 1219 (1997).CrossRefGoogle Scholar
48.Amaratunga, G. A. J., Chowalla, M., Kiely, C. J., Alexandrou, I., Aharonov, R., and Devenish, R. M., Nature 383 (6598), 321 (1996).CrossRefGoogle Scholar
49.Niwase, K., Tanaka, T., Kakimoto, Y., Ishihara, K. N., and Shingu, P. H., Mater. Trans. JIM 36 (2), 282 (1995).CrossRefGoogle Scholar
50.Tanaka, T., Motoyama, M., Ishihara, K. N., and Shingu, P. H., Mater. Trans. JIM 36 (2), 276 (1995).CrossRefGoogle Scholar
51.Spotts, M. F., Design of Machine Elements, 2nd ed. (Prentice-Hall, New York, 1953), p. 184.Google Scholar
52.Maurice, D. R. and Courtney, T. H., Metall. Trans. A 21A, 289 (1990).CrossRefGoogle Scholar
53.Magini, M., Burgio, N., Iasonna, A., Martelli, S., Padella, F., and Paradiso, E., J. Mater. Synth. Process. 1 (3), 135 (1993).Google Scholar
54.Kumar, S. and Tansley, T. L., J. Appl. Phys. 76 (7), 4390 (1994).CrossRefGoogle Scholar
55.Padella, F., Paradiso, E., Burgio, N., Magini, M., Martelli, S., Guo, W., and Iasonna, A., J. Less-Common Metals 175, 79 (1991).CrossRefGoogle Scholar
56.Suryanarayana, C., Chen, G. H., and Froes, F. H., Scripta Materialia 26, 1727 (1992).CrossRefGoogle Scholar
57.Burgio, N., Iasonna, A., Magini, M., Martelli, S., and Padella, F., Il Nuovo Cimento 13 (4), 459 (1991).CrossRefGoogle Scholar
58.Egerton, R. F., EELS in Electron Microscopy (Plenum Press, New York, 1986).Google Scholar
59.Metals Handbook 8, 9th ed. (ASM, Metals Park, OH, 1979), p. 449.Google Scholar
60.Herzberg, G., Infrared and Raman Spectra (D. Van Nostrand, Princeton, NJ, 1945).Google Scholar
61.Han, H.X. and Feldman, B.J., Solid State Commun. 65, 921 (1988).CrossRefGoogle Scholar
62.Kaufman, H., Metin, S., and Saperstein, D.D., Phys. Rev. B 39, 13053 (1989).CrossRefGoogle Scholar
63.Socrates, G., Infrared Characteristic Group Frequencies: Tables and Charts, 2nd ed. (John Wiley & Sons, New York, 1994), p. 54.Google Scholar
64.Colthup, N.B., J. Optical Soc. Am. 40, 397 (1950).CrossRefGoogle Scholar
65.Friedmann, T.A., Tallant, D. R., Barbour, J. C., Sullivan, J. P., Siegal, M. P., Simpson, R.L., Mikkalson, J., and McCarty, K.F., in Film Synthesis and Growth Using Energetic Beams, edited by Atwater, H. A., Dickinson, J.T., Lowndes, D.H., and Polman, A. (Mater. Res. Soc. Symp. Proc. 388, Pittsburgh, PA, 1995).Google Scholar
66.The Infrared Spectra Handbook of Inorganic Compounds (Sadtler Research Laboratories, Division of Bio-Laboratories, Inc., Philadelphia, PA, 1984).Google Scholar
67.Kishi, M., Suzuki, M., and Ogawa, K., Jpn. J. Appl. Phys. 131, 1153 (1992).CrossRefGoogle Scholar
68.Mizokawa, Y., Miyasato, T., Nakamura, S., Geib, K.M., and Wilmsen, C.W., J. Vac. Sci. Technol. A 5, 2809 (1988).CrossRefGoogle Scholar
69.Nilson, A., Bjorneholm, O., Tillborg, H., Hernnas, B., Guest, R. J., Sandell, A., Palmer, R. E., and Martensson, N., Surf. Sci. 287/288, 758 (1993).CrossRefGoogle Scholar
70.Bridgman, P. W., Proc. Am. Acad. Arts Sci. 81 (4), 193 (1952).CrossRefGoogle Scholar
71.Bridgman, P. W. and Simon, I., J. Appl. Phys. 24, 405 (1953).CrossRefGoogle Scholar
72.Pathak, D., Yamada, K., and Koch, C. C., Mechanical Alloying for Structural Applications, edited by DeBarbadillo, J. J., Froes, F. H., and Schwarz, R. (ASM INTERNATIONAL, Materials Park, OH, 1993), p. 205.Google Scholar
73.Davis, R.M., McDermott, B., and Koch, C. C., Metall. Trans. A 19A, 2867 (1988).CrossRefGoogle Scholar
74.Bhattacharya, A. K. and Arzt, E., Scripta Met. et Materialia 27, 749 (1992).CrossRefGoogle Scholar
75.Fang, P. H., J. Mater. Sci. Lett. 14, 536 (1995).CrossRefGoogle Scholar
76.Guo, Y. and Goddard, W.A. III, Chem. Phys. Lett. 237, 72 (1995).CrossRefGoogle Scholar