Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T03:33:37.916Z Has data issue: false hasContentIssue false

Partial filling of skutterudites: Optimization for thermoelectric applications

Published online by Cambridge University Press:  01 December 2005

G.S. Nolas*
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620
G. Fowler
Affiliation:
Department of Physics, University of South Florida, Tampa, Florida 33620
*
a)Address all correspondence to this author.e-mail: gnolas@cas.usf.edu
Get access

Abstract

Over the last ten years there has been substantial experimental and theoretical effort in understanding the transport properties of filled skutterudite compounds to optimize their thermoelectric properties. One such approach involves partially filling the voids in attempting to optimize the electrical properties while minimizing the thermal conductivity. We illustrate the importance of this approach by plotting and comparing the figure of merit of CoSb3 over a large range of carrier concentrations and thermal conductivity values. The thermal conductivity of partially filled skutterudites AxCo4Sb12, where A = La, Eu, and Yb, is analyzed using the Debye model to correlate the data with the type of filler atom in evaluating the role of the filler in affecting the thermal conductivity. Partial void filling has resulted in relatively high thermoelectric figures of merit at moderately high temperatures.

Type
Articles—Energy and The Environment Special Section
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nolas, G.S., Sharp, J.W. and Goldsmid, H.J.: Thermoelectrics: Basic Principles and New Materials Developments (Springer-Verlag, Heidelberg, Germany, 2001).CrossRefGoogle Scholar
2.Nolas, G.S., Morelli, D.T. and Tritt, T.M.: Skutterudites: A phonon-glass-electron-crystal approach to advanced thermoelectric energy conversion applications. Ann. Rev. Mater. Sci. 29, 89 (1999).CrossRefGoogle Scholar
3.Uher, C.: Skutterudites: Prospective novel thermoelectrics, in Semiconductors and Semimetals, Vol. 69, edited by Tritt, Terry M. (Academic Press, New York, 2000), p. 139.Google Scholar
4.Morelli, D.T., Caillat, T., Fleurial, J.P., Borshchevsky, A., Vandersande, J., Chen, B. and Uher, C.: Low-temperature transport properties of p-type CoSb3. Phys. Rev. B 51, 9622 (1995).CrossRefGoogle ScholarPubMed
5.Nolas, G.S., Cohn, J.L. and Slack, G.A.: The effect of partial void filling on the lattice thermal conductivity of skutterudites. Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
6.Slack, G.A.: The thermal conductivity of nonmetallic crystals, in Solid State Physics, Vol. 34, edited by Ehrenreich, H., Seitz, F., and Turnbull, D. (Academic Press, New York, 1979), p. 1.Google Scholar
7.Cahill, D.G., Watson, S.K. and Pohl, R.O.: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992).CrossRefGoogle Scholar
8.Thermoelectric Materials 2003—Research and Applications, edited by Nolas, G.S., Yang, J., Hogan, T.P., and Johnson, D.C. (Mater. Res. Soc. Symp. Proc. No. 793, Warrendale, PA, 2004).Google Scholar
9.Sales, B.C.: Filled skutterudites, in Handbook of the Physics and Chemistry of Rare Earths, Vol. 33, edited by Gschneider, K.A. Jr., Bunzli, J.C., and Pecharsky, U.A. (Elsevier Science, Amsterdam, Netherlands, 2002), p. 1.Google Scholar
10.Chen, L.D., Kawahara, T., Tang, X.F., Goto, T., Hirai, T., Dyck, J.S., Chen, W. and Uher, C.: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864 (2001).Google Scholar
11.Nolas, G.S., Kaeser, M., Littleton, R.T., Tritt, T.M., Sellinschegg, H., Johnson, D.C. and Nelson, E.: Partially-filled skutterudites: Optimizing the thermoelectric properties, in Thermoelectric Materials 2000—The Next Generation Materials for Small-scale Refrigeration and Power Generation Applications, edited by Tritt, T.M., Nolas, G.S., Mahan, G.D., Mandru, D., and Kanatzidis, M.G. (Mater. Res. Soc. Symp. Proc. 626, Warrendale, PA, 2001), p. Z10.1.1.Google Scholar
12.Puyet, M., Lenoi, B., Dauscher, A., Dehmas, M., Stiewe, C. and Muller, E.: High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phys. 95, 4852 (2004).Google Scholar
13.Morelli, D.T., Meisner, G.P., Chen, B., Hu, S. and Uher, C.: Cerium filling and doping of cobalt triantimonides. Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
14.Lamberton, G.A., Bhattacharya, S., Littleton, R.T., Kaeser, M.A., Tedstrom, R.H., Tritt, T.M., Yang, J. and Nolas, G.S.: High figure of merit in Eu-filled CoSb3 skutterudites. Appl. Phys. Lett. 80, 598 (2001).CrossRefGoogle Scholar
15.Grytsiv, A., Rogl, P., Berger, S., Paul, C., Bauer, E., Godart, C., Ni, B., Abd-Elmeguid, M.M., Saccone, A., Ferro, R. and Kaczorowski, D.: Structure and physical properties of the thermoelectric skutterudite EuyFe4−xCoxSb12. Phys. Rev. B 66, 094411 (2002).Google Scholar
16.Nolas, G.S., Yang, J. and Takizawa, H.: Transport properties of germanium-filled CoSb3. J. Appl. Phys. 84, 5210 (2004).Google Scholar
17.Nolas, G.S., Takizawa, H., Endo, T., Sellinschegg, H. and Johnson, D.C.: Thermoelectric properties of Sn-filled skutterudites. J. Appl. Phys. 77, 52 (2000).Google Scholar
18.Sales, B.C., Chakoumakos, B.C. and Mandrus, D.: Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B 61, 2475 (2000).CrossRefGoogle Scholar
19.Nolas, G.S., Kaeser, M., Littleton, R.T. and Tritt, T.M.: High figure of merit partially ytterbium filled skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).Google Scholar
20.Yang, J., Morelli, D.T., Meisner, G.P., Chen, W., Dyck, J.S. and Uher, C.: Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites. Phys. Rev. B 67, 165207 (2003).CrossRefGoogle Scholar
21.Dilley, N.R., Bauer, E.D., Maple, M.B. and Sales, B.C.: Thermoelectric properties of chemically substituted skutterudites YbyCo4SnxSb12−x. J. Appl. Phys. 88, 1948 (2000).CrossRefGoogle Scholar
22.Callaway, J.: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959).Google Scholar
23.Dilley, N.R., Freeman, E.J., Bauer, E.D. and Maple, M.B.: Intermediate valence in the filled skutterudite compound YbFe4Sb12. Phys. Rev. B 58, 6287 (1998).CrossRefGoogle Scholar
24.Keppens, V., Mandrus, D., Sales, B.C., Chakoumakos, B.C., Dai, P., Coldea, R., Maple, M.B., Gajewski, D.A., Freeman, E.J. and Bennignton, S.: Localized vibrational modes in metallic solids. Nature 329, 876 (1998).CrossRefGoogle Scholar
25.Cao, D., Bridges, F., Chesler, P., Bushart, S., Bauer, E.D. and Maple, M.D.: Evidence for rattling behavior of the filler atom (L) in the filled skutterudites LT4Sb12 (L = Ce, Eu, Yb; T = Fe, Ru; X = P, Sb) from EXAFS studies. Phys. Rev. B 70, 094109 (2004).CrossRefGoogle Scholar
26.Feldman, J.L., Singh, D.J., Mazin, I.I., Mandrus, D. and Sales, B.C.: Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys. Rev. B 61, R9209 (2000).CrossRefGoogle Scholar
27.Fleurial, J-P., Borshchevsky, A., Caillat, T., Morelli, D.T., and Meisner, G.P.: High figure of merit in Ce-filled skutterudites, in Proceedings of the Fifteenth International Conference on Thermoelectrics, edited by Caillat, T., Borshchevsky, A., and Fleurial, J-P. (IEEE Catalog # 96TH8169, Piscataway, NJ, 1996), p. 91.Google Scholar
28.Tritt, T.M.: Thermoelectric materials: Principles, structure, properties and applications, in Encyclopedia of Materials: Science and Technology, edited by Buschaw, K.H.J. (Elsevier Science, Amsterdam, The Netherlands, 2001), p. 1.Google Scholar
29.Dyck, J.S., Chen, W., Uher, C., Chen, L., Tang, X. and Hirai, T.: Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni. J. Appl. Phys. 91, 3698 (2002).Google Scholar
30.Slack, G.A. and Tsoukala, V.G.: Some properties of semiconducting IrSb3. J. Appl. Phys. 76, 1665 (1994).Google Scholar