Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-17T20:00:23.393Z Has data issue: false hasContentIssue false

Oxidation of silicon carbide and the formation of silica polymorphs

Published online by Cambridge University Press:  03 March 2011

Maxime J-F. Guinel
Washington State University, School of Mechanical and Materials Engineering, Pullman, Washington 99164-2920
M. Grant Norton*
Washington State University, School of Mechanical and Materials Engineering, Pullman, Washington 99164-2920
a) Address all correspondence to this author. e-mail:
Get access


The oxidation of both single crystal and relatively pure polycrystalline silicon carbide, between 973 and 2053 K, resulted in the formation of cristobalite, quartz, or tridymite, which are the stable crystalline polymorphs of silica (SiO2) at ambient pressure. The oxide scales were found to be pure SiO2 with no contamination resulting from the oxidizing environment. The only variable affecting the occurrence of a specific polymorph was the oxidation temperature. Cristobalite was formed at temperatures ≥1673 K, tridymite between 1073 and 1573 K, and quartz formed at 973 K. The polymorphs were determined using electron diffraction in a transmission electron microscope. These results were further confirmed using infrared and Raman spectroscopies. Cristobalite was observed to grow in a spherulitic fashion from amorphous silica. This was not the case for tridymite and quartz, which appeared to grow as oriented crystalline films. The presence of a thin silicon oxycarbide interlayer was detected at the interface between the SiC substrate and the crystalline silica using x-ray photoelectron spectroscopy.

Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Ogbuji, L.U.J.T., Opila, E.J.: A comparison of the oxidation kinetics of SiC and Si3N4. J. Electrochem. Soc. 142, 925 (1995).CrossRefGoogle Scholar
2.Zheng, Z., Tressler, R.E., Spear, K.E.: Oxidation of single crystal silicon carbide. Part I. Experimental studies. J. Electrochem. Soc. 137, 854 (1990).CrossRefGoogle Scholar
3.Lipkin, L.A., Palmour, J.W.: Improved oxidation procedures for reduced SiO2/SiC defects. J. Electron. Mater. 25, 909 (1996).CrossRefGoogle Scholar
4.Guinel, M.J-F., Norton, M.G.: Blowing of silica microforms on silicon carbide. J. Non-Cryst. Solids 351, 251 (2005).CrossRefGoogle Scholar
5.Ogbuji, L.U.J.T., Singh, M.: High-temperature oxidation behavior of reaction-formed silicon carbide ceramics. J. Mater. Res. 10, 3232 (1995).CrossRefGoogle Scholar
6.Schiroky, G.H.: Oxidation behavior of chemically vapor-deposited silicon carbide. Adv. Ceram. Mater. 2, 137 (1987).CrossRefGoogle Scholar
7.Fox, D.S.: Oxidation behavior of chemically vapor-deposited silicon carbide and silicon nitride from 1200° to 1600 °C. J. Am. Ceram. Soc. 81, 945 (1998).CrossRefGoogle Scholar
8.Ogbuji, L.U.J.T.: Effect of oxide devitrification on oxidation kinetics of SiC. J. Am. Ceram. Soc. 80, 1544 (1997).CrossRefGoogle Scholar
9.Kingetsu, T., Ito, K., Takehara, M., Masumoto, H.: Kinetics of cristobalite growth on polycrystalline SiC film studied using high-temperature in situ x-ray diffractometry. Mater. Res. Bull. 33, 731 (1998).CrossRefGoogle Scholar
10.Li, J., Eveno, P., Huntz, A.M.: Oxidation of SiC. Werkstoffe Korrosion 41, 716 (1990).CrossRefGoogle Scholar
11.Costello, J.A., Tressler, R.E.: Oxidation kinetics of hot-pressed and sintered α-SiC. J. Am. Ceram. Soc. 64, 327 (1981).CrossRefGoogle Scholar
12.Guo, S., Hirosaki, N., Tanaka, H., Yamamoto, Y., Nishimura, T.: Oxidation behavior of liquid phase sintered SiC with AlN and Er2O3 additives between 1200 °C and 1400 °C. J. Eur. Ceram. Soc. 23, 2023 (2003).CrossRefGoogle Scholar
13.Tortorelli, P.F., More, K.L.: Effects of high water-vapor pressure on oxidation of silicon carbide at 1200 °C. J. Am. Ceram. Soc. 86, 1249 (2003).CrossRefGoogle Scholar
14.Heuer, A.H., Ogbuji, L.U., Mitchell, T.E.: The microstructure of oxide scales on oxidized Si and SiC single crystals. J. Am. Ceram. Soc. 63, 354 (1980).CrossRefGoogle Scholar
15.Sibieude, F., Rodriguez, J., Clavaguera-Mora, M.T.: Kinetics and crystallization studies by in situ x-ray diffraction of the oxidation of chemically vapor deposited SiC. Thin Solid Films 204, 217 (1991).CrossRefGoogle Scholar
16.Costello, J.A., Tressler, R.E.: Oxidation kinetics of silicon carbide crystals and ceramics: I, in dry oxygen. J. Am. Ceram. Soc. 69, 674 (1986).CrossRefGoogle Scholar
17.Gourbilleau, F., Nouet, G.: Analysis of SiC-SiO2 interfaces by TEM. Mater. Sci. Forum 126–128, 599 (1993).CrossRefGoogle Scholar
18.Sosman, R. B.: The Phases of Silica Rutgers University Press, New Brunswick, NJ, 1965, p. 38.Google Scholar
19.McHone, J.F., Killgore, M., Kudryavtsev, A. Cristobalite inclusions in Libyan desert glass: Confirmation using Raman spectroscopy. Lunar and Planetary Science XXXI Conference, Lunar and Planetary Institute, Houston, TX, 1877 (2000).Google Scholar
20.Kingma, K.J., Hemley, R.J.: Raman spectroscopic study of microcrystalline silica. Am. Mineral. 79, 269 (1994).Google Scholar
21.Darling, R.S., Chou, I-M., Bodnar, R.J.: An occurrence of metastable cristobalite in high-pressure garnet granulite. Science 276, 91 (1997).CrossRefGoogle ScholarPubMed
22.Swainson, I.P., Dove, M.T., Palmer, D.C.: Infrared and raman spectroscopy studies of the α-β phase transition in cristobalite. Phys. Chem. Miner. 30, 353 (2003).CrossRefGoogle Scholar
23.Bates, J.B.: Raman spectra of α and β cristobalite. J. Chem. Phys. 57, 4042 (1972).CrossRefGoogle Scholar
24.Etchepare, J., Merian, M., Kaplan, P.: Vibrational normal modes of SiO2. II. Cristobalite and tridymite. J. Chem. Phys. 68, 1531 (1978).CrossRefGoogle Scholar
25.Gadsden, J.A.: Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworths, London, 1975).Google Scholar
26.D'Or, L., Haccuria, M., Machiroux, R. Infrared absorption spectra of the different polymorphs of silica and of hexagonal germanuim dioxide. Twenty-Seventh Congres International de Chimie Industrielle, Industrie Chimique Belge, Bruxelles, Belgium, 3, 150 (1955).Google Scholar
27.Haccuria, M.: Infrared spectra of amorphous silica, tridymite, cristobalite, quartz and fused quartz. Bull. Soc. Chim. Belg. 62, 428 (1953).CrossRefGoogle Scholar
28.Xu, Y-N., Ching, W.Y.: Electronic and optical properties of all polymorphic forms of silicon dioxide. Phys. Rev. B 44, 11048 (1991).CrossRefGoogle ScholarPubMed
29.Swamy, V., Saxena, S.K., Sundman, B., Zhang, J.: A thermodynamic assessment of silica phase diagram. J. Geophys. Res. 99, 11787 (1994).CrossRefGoogle Scholar
30.Rodriguez-Viejo, J., Sibieude, F., Clavaguera-Mora, M.T., Monty, C.: 18O diffusion through amorphous SiO2 and cristobalite. Appl. Phys. Lett. 63, 1906 (1993).CrossRefGoogle Scholar
31.Luthra, K.L.: Some new perspectives on oxidation of silicon carbide and silicon nitride. J. Am. Ceram. Soc. 74, 1095 (1991).CrossRefGoogle Scholar
32.Withers, R.L., Thompson, J.G., Xiao, Y., Kirkpatrick, R.J.: An electron diffraction study of the polymorphs of SiO2-tridymite. Phys. Chem. Miner. 21, 421 (1994).CrossRefGoogle Scholar
33.Carpenter, M.A., Wennemer, M.: Characterization of synthetic tridymites by transmission electron microscopy. Am. Mineral. 70, 517 (1985).Google Scholar
34.Cellai, D., Carpenter, M.A., Wruck, B., Salje, E.K.H.: Characterization of high-temperature phase transitions in single crystals of steinbach tsridymite. Am. Mineral. 79, 606 (1994).Google Scholar
35.Stevens, S.J., Hand, R.J., Sharp, J.H.: Polymorphism of silica. J. Mater. Sci. 32, 2929 (1997).CrossRefGoogle Scholar
36.Geng, Y., Norton, M.G.: Early stages of oxidation of aluminum nitride. J. Mater. Res. 14, 2708 (1999).CrossRefGoogle Scholar
37.Opila, E.: Influence of alumina reaction tube impurities on the oxidation of chemically vapor-deposited silicon carbide. J. Am. Ceram. Soc. 78, 1107 (1995).CrossRefGoogle Scholar
38.Okada, K., Kameshima, Y., Yasumori, A.: Chemical shifts of silicon x-ray photoelectron spectra by polymerization structures of silicates. J. Am. Ceram. Soc. 81, 1970 (1998).CrossRefGoogle Scholar
39.Gross, T., Ramm, M., Sonntag, H., Unger, W., Weijers, H.M., Adem, E.H.: An XPS analysis of different SiO2 modifications employing a C 1s as well as an Au 4f7/2 static charge reference. Surf. Interface Anal. 18, 59 (1992).CrossRefGoogle Scholar
40.Kimata, M., Hatta, T., Ibaraki, N.N.: Probing the chemical structures of silica polymorphs by x-ray photoelectron spectroscopy: The differences in Si2p and O1s binding energy between eclipsed and staggered Si2O7 configurations. N. Jb. Miner. Mh. 10, 433 (1999).Google Scholar
41.Amy, F., Enriquez, H., Soukiassian, P., Storino, P-F., Chabal, Y.J., Mayne, A.J., Dujardin, G., Hwu, Y.K., Brylinski, C.: Atomic scale oxidation of a complex system: O2/α-SiC(0001) − (3 × 3). Phys. Rev. Lett. 86, 4342 (2001).CrossRefGoogle Scholar
42.Radtke, C., Baumvol, I.J.R., Morais, J.: Initial stages of SiC oxidation investigated by ion scattering and angle-resolved x-ray photoelectron spectroscopies. Appl. Phys. Lett. 78, 3601 (2001).CrossRefGoogle Scholar
43.Onneby, C., Pantano, C.G.: Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface. J. Vac. Sci. Technol., A 15, 1597 (1997).CrossRefGoogle Scholar
44.Hornetz, B., Michel, H-J., Halbritter, J.: Oxidation and 6H-SiC-SiO2 interfaces. J. Vac. Sci. Technol., A 13, 767 (1995).CrossRefGoogle Scholar
45.Amy, F., Soukiassian, P., Hwu, Y.K., Brylinski, C.: SiO2/6H-SiC(0001) 3 × 3 initial interface formation by Si overlayer oxidation. Appl. Phys. Lett. 75, 3360 (1999).CrossRefGoogle Scholar
46.Hornetz, B., Michel, H-J., Habritter, J.: ARXPS studies of SiO2-SiC interfaces and oxidation of 6H-SiC single crystal Si-(001) and C-(00-1) surfaces. J. Mater. Res. 9, 3088 (1994).CrossRefGoogle Scholar
47.Virojanadara, C., Johansson, L.I.: Studies of oxidized hexagonal SiC surfaces and the SiC/SiO2 interface using photoemission and synchrotron radiation. J. Phys.: Condens. Matter 16, S1783 (2004).Google Scholar
48.Renlund, G.M., Prochazka, S., Doremus, R.H.: Silicon oxycarbide glasses: Part I. Preparation and chemistry. J. Mater. Res. 6, 2716 (1991).CrossRefGoogle Scholar
49.Renlund, G.M., Prochazka, S., Doremus, R.H.: Silicon oxycarbide glasses: Part II. Structure and properties. J. Mater. Res. 6, 2723 (1991).CrossRefGoogle Scholar