Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-8sgpw Total loading time: 0.33 Render date: 2021-02-26T05:20:25.143Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Optical fiber-drawing temperature of fluorogallate glasses

Published online by Cambridge University Press:  31 January 2011

S. Suriñach
Affiliation:
Departament Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
E. Illekova
Affiliation:
Institute of Physics, Slovak Academy of Sciences, 84228 Bratislava, Slovakia
G. Zhang
Affiliation:
Laboratoire des Matériaux Photoniques, Université de Rennes, 35042 Rennes, France
M. Poulain
Affiliation:
Laboratoire des Matériaux Photoniques, Université de Rennes, 35042 Rennes, France
M.D. Baró
Affiliation:
Departament Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Get access

Abstract

The thermal properties and the crystallization behavior of fluorogallate-based glasses were analyzed. The kinetic nature of the glass transition was used to determine the temperature dependence of the viscosity and from it an estimation of the appropriate drawing temperature for an optical fiber was established. The crystallization kinetics were studied by using both isothermal and continuous heating regimes. The temperature range for nucleation was evaluated and for samples previously nucleated the activation energy of the growth process was found. The results were used to estimate the empirical nucleation and crystal growth rates from which the time-temperature-transformation curves and the temperature-heating rate-transformation diagrams were constructed. The results obtained agree with experimental data and are discussed in the light of minimizing the volume of crystals formed during fiber drawing.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Poulain, M., Critical Reports on Applied Chemistry, edited by Comyns, A. (J. Wiley & Sons, New York, 1989), p. 11.Google Scholar
2. Mazé, G., Critical Reports on Applied Chemistry, edited by Comyns, A. (J. Wiley & Sons, New York, 1989), p. 201.Google Scholar
3. Takahashi, S. and Iwasaki, H., Fluoride Glass Fiber Optics, edited by Aggarwal, I. and Lu, G. (Academic Press Inc., Boston, MA, 1991), p. 213.CrossRefGoogle Scholar
4. Miyajima, Y., Sugawa, T., and Fukasaku, Y., Electron. Lett. 27, 1706 (1991).CrossRefGoogle Scholar
5. Messaddeq, Y., Delben, A., Aegerter, M. A., Soufiane, A., and Poulain, M., J. Mater. Res. 8, 885 (1993).CrossRefGoogle Scholar
6. Suriñach, S., Baró, M.D., Clavaguera-Mora, M.T., and Clavaguera, N., J. Non-Cryst. Solids 58, 209 (1983).CrossRefGoogle Scholar
7. Kauzmann, W., Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
8. Hruby, A., Czech. J. Phys. 24, 1187 (1972).CrossRefGoogle Scholar
9. Saad, M. and Poulain, M., Mater. Sci. Forum 1920, 11 (1987).CrossRefGoogle Scholar
10. Scherer, G. W., J. Am. Ceram. Soc. 75, 1060 (1992).CrossRefGoogle Scholar
11. Moynihan, C. T., J. Am. Ceram. Soc. 76, 1081 (1993).CrossRefGoogle Scholar
12. Kissinger, H. E., Anal. Chem. 9, 1702 (1957).CrossRefGoogle Scholar
13. Bansal, N. P., Doremus, R. H., Bruce, A. J., and Moynihan, C. T., J. Am. Ceram. Soc. 66, 233 (1983).CrossRefGoogle Scholar
14. Bansal, N. P., Bruce, A. J., Doremus, R. H., and Moynihan, C. T., Proc. SPIE 484, 51 (1984).CrossRefGoogle Scholar
15. Neilson, G. F., Smith, G. L., and Weinberg, M. C., Mater. Sci. Forum 5, 235 (1985).CrossRefGoogle Scholar
16. Matusita, K., Yamamoto, H., Sudo, T., and Komatsu, T., Mater. Sci. Forum 3233, 185 (1988).CrossRefGoogle Scholar
17. Nakao, Y. and Moynihan, C. T., Mater. Sci. Forum 6768, 187 (1991).CrossRefGoogle Scholar
18. Weinberg, M. C., J. Am. Ceram. Soc. 74, 1905 (1991).CrossRefGoogle Scholar
19. Jha, A., J. Non-Cryst. Solids 134, 157 (1991).CrossRefGoogle Scholar
20. Baró, M. D., Otero, A., Suriñach, S., Jha, A., Jordery, S., Poulain, M., Soufiane, A., Hewak, D.W., Taylor, E.R., and Payne, D.N., Mater. Sci. Eng. A179/A180, 303 (1994).CrossRefGoogle Scholar
21. Onorato, P. I. K. and Uhlmann, D. R., J. Non-Cryst. Solids 22, 367 (1976).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 23 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Optical fiber-drawing temperature of fluorogallate glasses
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Optical fiber-drawing temperature of fluorogallate glasses
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Optical fiber-drawing temperature of fluorogallate glasses
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *