Skip to main content Accessibility help

Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors

Published online by Cambridge University Press:  15 September 2015

Muhammad Usman
School of Physics and Optoelectronic Technology, Dalian University of Technology, Liaoning, Dalian 116024, People's Republic of China
Lujun Pan
School of Physics and Optoelectronic Technology, Dalian University of Technology, Liaoning, Dalian 116024, People's Republic of China
Muhammad Asif
School of Physics and Optoelectronic Technology, Dalian University of Technology, Liaoning, Dalian 116024, People's Republic of China School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
Zafar Mahmood
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
E-mail address:
Get access


A ternary Nickel foam (NF)–graphene/MnO2/polyaniline (PANI) nanocomposite has been synthesized using green chemistry approach (in situ polymerization). All reactants were dispersed homogeneously in precursor solution in the form of ions and molecules. PANI and MnO2 molecules on the NF–graphene contact each other and are arranged alternately in the composite. Alternative arrangement of PANI and MnO2 nanoparticles separates them and prevents the aggregation of PANI and MnO2 to decrease the particle size of the composite on the surface of NF–graphene. The intermolecule contact improves the conductivity of the composite. The composite showed excellent specific capacitance of 1081 F/g at a scan rate of 1 mV/s and specific capacitance of 815 F/g at a current density of 3 A/g, having excellent cycling stability. Current study provides an alternative pathway to improve the rate capability and cycling stability of nanostructured electrodes, by offering a great promise for their applications in supercapacitors.

Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below.


Contributing Editor: Ian M. Reaney


Yu, Z., Tetard, L., Zhai, L., and Thomas, J.: Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions Energy Environ. Sci. 8(3), 702 (2015).CrossRefGoogle Scholar
Hellstern, S., Kitzler, P., Neuhaus, R., and Kolaric, I.: Electrochemical capacitors for electromobility: A review. In 15. Internationales Stuttgarter Symposium; Bargende, M., Reuss, H-C. and Wiedemann, J., eds.; Springer Fachmedien: Wiesbaden, 2015; p. 121.CrossRefGoogle Scholar
Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T., and Wei, F.: Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density Adv. Funct. Mater. 21(12), 2366 (2011).CrossRefGoogle Scholar
Bao, L., Zang, J., and Li, X.: Flexible Zn2SnO4/MnO2 core/shell nanocable−carbon microfiber hybrid composites for high-performance supercapacitor electrodes Nano Lett. 11(3), 1215 (2011).CrossRefGoogle ScholarPubMed
Chen, J., Bo, Z., and Lu, G.: Vertically-oriented graphene for supercapacitors, In Vertically-oriented Graphene; Springer International Publishing: Weinheim, 2015; p. 79.Google Scholar
Chen, S-M., Ramachandran, R., Mani, V., and Saraswathi, R.: Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: A review Int. J. Electrochem. Sci. 9, 4072 (2014).Google Scholar
Zhang, L.L. and Zhao, X.: Carbon-based materials as supercapacitor electrodes Chem. Soc. Rev. 38(9), 2520 (2009).CrossRefGoogle ScholarPubMed
Villers, D., Jobin, D., Soucy, C., Cossement, D., Chahine, R., Breau, L., and Bélanger, D.: The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor J. Electrochem. Soc. 150(6), A747 (2003).CrossRefGoogle Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene Nature. 438(7065), 197 (2005).CrossRefGoogle ScholarPubMed
Mao, M., Hu, J., and Liu, H.: Graphene-based materials for flexible electrochemical energy storage Int. J. Energy Res. 39(6), 727 (2015).CrossRefGoogle Scholar
Seong, M. and Kim, D.S.: Effects of facile amine-functionalization on the physical properties of epoxy/graphene nanoplatelets nanocomposites J. Appl. Polym. Sci. 132(28), 42269 (2015).CrossRefGoogle Scholar
Asif, M., Tan, Y., Pan, L., Li, J., Rashad, M., and Usman, M.: Thickness controlled water vapors assisted growth of multilayer graphene by ambient pressure chemical vapor deposition J. Phys. Chem. C. 119(6), 3079 (2015).CrossRefGoogle Scholar
Rashad, M., Pan, F., Hu, H., Asif, M., Hussain, S., and She, J.: Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets Mater. Sci. Eng., A 630, 36 (2015).CrossRefGoogle Scholar
Rashad, M., Pan, F., Asif, M., and Tang, A.: Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) J. Ind. Eng. Chem. 20(6), 4250 (2014).CrossRefGoogle Scholar
Guo, C., Li, H., Zhang, X., Huo, H., and Xu, C.: 3D porous CNT/MnO2 composite electrode for high-performance enzymeless glucose detection and supercapacitor application Sens. Actuators, B 206, 407 (2015).CrossRefGoogle Scholar
Huang, M., Li, F., Zhao, X.L., Luo, D., You, X.Q., Zhang, Y.X., and Li, G.: Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes Electrochim. Acta 152, 172 (2015).CrossRefGoogle Scholar
Huang, M., Mi, R., Liu, H., Li, F., Zhao, X.L., Zhang, W., He, S.X., and Zhang, Y.X.: Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes J. Power Sources 269(0), 760 (2014).CrossRefGoogle Scholar
Zhao, Y-Q., Zhao, D-D., Tang, P-Y., Wang, Y-M., Xu, C-L., and Li, H-L.: MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy Mater. Lett. 76, 127 (2012).CrossRefGoogle Scholar
Hao, J., Zhong, Y., Liao, Y., Shu, D., Kang, Z., Zou, X., He, C., and Guo, S.: Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene Electrochim. Acta 167, 412 (2015).CrossRefGoogle Scholar
Liu, Y., He, D., Wu, H., Duan, J., and Zhang, Y.: Hydrothermal self-assembly of manganese dioxide/manganese carbonate/reduced graphene oxide aerogel for asymmetric supercapacitors Electrochim. Acta 164, 154 (2015).CrossRefGoogle Scholar
Zeng, Z., Zhou, H., Long, X., Guo, E., and Wang, X.: Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance J. Alloys Compd. 632, 376 (2015).CrossRefGoogle Scholar
Gao, H., Xiao, F., Ching, C.B., and Duan, H.: High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2 ACS Appl. Mater. Interfaces 4(5), 2801 (2012).CrossRefGoogle ScholarPubMed
Chen, Y., Zhang, Y., Geng, D., Li, R., Hong, H., Chen, J., and Sun, X.: One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method Carbon 49(13), 4434 (2011).CrossRefGoogle Scholar
Bello, A., Fashedemi, O.O., Fabiane, M., Lekitima, J.N., Ozoemena, K.I., and Manyala, N.: Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor Electrochim. Acta 114, 48 (2013).CrossRefGoogle Scholar
Dong, X., Wang, X., Wang, J., Song, H., Li, X., Wang, L., Chan-Park, M.B., Li, C.M., and Chen, P.: Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode Carbon 50(13), 4865 (2012).CrossRefGoogle Scholar
Zhang, J., Shu, D., Zhang, T., Chen, H., Zhao, H., Wang, Y., Sun, Z., Tang, S., Fang, X., and Cao, X.: Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route J. Alloys Compd. 532, 1 (2012).CrossRefGoogle Scholar
Li, Y., Cao, D., Wang, Y., Yang, S., Zhang, D., Ye, K., Cheng, K., Yin, J., Wang, G., and Xu, Y.: Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors J. Power Sources 279, 138 (2015).CrossRefGoogle Scholar
Bello, A., Makgopa, K., Fabiane, M., Dodoo-Ahrin, D., Ozoemena, K., and Manyala, N.: Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications J. Mater. Sci. 48(19), 6707 (2013).CrossRefGoogle Scholar
Chae, S.J., Güneş, F., Kim, K.K., Kim, E.S., Han, G.H., Kim, S.M., Shin, H.J., Yoon, S.M., Choi, J.Y., and Park, M.H.: Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation Adv. Mater. 21(22), 2328 (2009).CrossRefGoogle Scholar
Teng, F., Santhanagopalan, S., Wang, Y., and Meng, D.D.: In-situ hydrothermal synthesis of three-dimensional MnO2–CNT nanocomposites and their electrochemical properties J. Alloys Compd. 499(2), 259 (2010).CrossRefGoogle Scholar
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects Solid State Commun. 143(1), 47 (2007).CrossRefGoogle Scholar
Gao, T., Fjellvåg, H., and Norby, P.: A comparison study on Raman scattering properties of α-and β-MnO2 Anal. Chim. Acta 648(2), 235 (2009).CrossRefGoogle ScholarPubMed
Wang, H., Hao, Q., Yang, X., Lu, L., and Wang, X.: A nanostructured graphene/polyaniline hybrid material for supercapacitors Nanoscale 2(10), 2164 (2010).CrossRefGoogle ScholarPubMed
Shu, D., Zhang, J., He, C., Meng, Y., Chen, H., Zhang, Y., and Zheng, M.: Improved electrochemical redox performance of 2,5-dimercapto-1,3,4-thiadiazole by poly(3-methoxythiophene) J. Appl. Electrochem. 36(12), 1427 (2006).CrossRefGoogle Scholar
Wu, Z-S., Ren, W., Wang, D-W., Li, F., Liu, B., and Cheng, H-M.: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors ACS Nano 4(10), 5835 (2010).CrossRefGoogle ScholarPubMed
Winter, M. and Brodd, R.J.: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104(10), 4245 (2004).CrossRefGoogle ScholarPubMed
Sharma, R.K., Rastogi, A.C., and Desu, S.B.: Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor Electrochim. Acta 53(26), 7690 (2008).CrossRefGoogle Scholar
Ray, S.C., Saha, A., Basiruddin, S.K., Roy, S.S., and Jana, N.R.: Polyacrylate-coated graphene-oxide and graphene solution via chemical route for various biological application Diamond Relat. Mater. 20(3), 449 (2011).CrossRefGoogle Scholar
Sun, L-J., Liu, X-X., Lau, K.K-T., Chen, L., and Gu, W-M.: Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor Electrochim. Acta 53(7), 3036 (2008).CrossRefGoogle Scholar
Xiong, P., Hu, C., Fan, Y., Zhang, W., Zhu, J., and Wang, X.: Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance J. Power Sources 266, 384 (2014).CrossRefGoogle Scholar
Zhang, J., Yu, Y., and Huang, D.: Good electrical and mechanical properties induced by the multilayer graphene oxide sheets incorporated to amorphous carbon films Solid State Sci. 12(7), 1183 (2010).CrossRefGoogle Scholar
Morozan, A., Jegou, P., Jousselme, B., and Palacin, S.: Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction Phys. Chem. Chem. Phys. 13(48), 21600 (2011).CrossRefGoogle ScholarPubMed
Monkman, A.P., Stevens, G.C., and Bloor, D.: X-ray photoelectron spectroscopic investigations of the chain structure and doping mechanisms in polyaniline J. Phys. D: Appl. Phys. 24, 12 (1991).CrossRefGoogle Scholar
Angelopoulos, M., Asturias, G.E., Ermer, S.P., Ray, A., Scherr, E.M., Macdiarmid, A.G., Akhtar, M., Kiss, Z., and Epstein, A.J.: Polyaniline: Solutions, films and oxidation state Mol. Cryst. Liq. Cryst. Incorporating Nonlinear Opt. 160(1), 151 (1988).CrossRefGoogle Scholar
MacDiarmid, A.G., Yang, L.S., Huang, W.S., and Humphrey, B.D.: Polyaniline: Electrochemistry and application to rechargeable batteries Synth. Met. 18(1–3), 393 (1987).CrossRefGoogle Scholar
Rodrigues, P.C., Muraro, M., Garcia, C.M., Souza, G.P., Abbate, M., Schreiner, W.H., and Gomes, M.A.B.: Polyaniline/lignin blends: Thermal analysis and XPS Eur. Polym. J. 37(11), 2217 (2001).CrossRefGoogle Scholar
Hummers, W.S. and Offeman, R.E.: Preparation of Graphitic oxide J. Am. Chem. Soc. 80(6), 1339 (1958).CrossRefGoogle Scholar
Wang, J-Y., Yu, C-M., Hwang, S-C., Ho, K-C., and Chen, L-C.: Influence of coloring voltage on the optical performance and cycling stability of a polyaniline–indium hexacyanoferrate electrochromic system Sol. Energy Mater. Sol. Cells 92(2), 112 (2008).CrossRefGoogle Scholar
Jang, J.H., Machida, K., Kim, Y., and Naoi, K.: Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances Electrochim. Acta 52(4), 1733 (2006).CrossRefGoogle Scholar
Zhou, Z., Cai, N., and Zhou, Y.: Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon Mater. Chem. Phys. 94(2), 371 (2005).CrossRefGoogle Scholar
Yuan, C., Su, L., Gao, B., and Zhang, X.: Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes Electrochim. Acta 53(24), 7039 (2008).CrossRefGoogle Scholar
Chen, L., Sun, L-J., Luan, F., Liang, Y., Li, Y., and Liu, X-X.: Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles J. Power Sources 195(11), 3742 (2010).CrossRefGoogle Scholar
Liu, F-J., Hsu, T-F., and Yang, C-H.: Construction of composite electrodes comprising manganese dioxide nanoparticles distributed in polyaniline–poly (4-styrene sulfonic acid-co-maleic acid) for electrochemical supercapacitor J. Power Sources 191(2), 678 (2009).CrossRefGoogle Scholar
Zhang, L.Y.J.X., Zhang, S.C., and Yang, W.S.: Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite aselectrode material for electrochemical capacitor J. Power Sources 173(2), 1017 (2007).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 197
Total number of PDF views: 167 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-cdnjt Total loading time: 0.963 Render date: 2021-01-18T05:15:49.626Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 04:55:21 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *