Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s65px Total loading time: 0.31 Render date: 2021-03-07T07:29:22.762Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Nanomechanical properties of sub-10 nm carbon film overcoats using the nanoindentation technique

Published online by Cambridge University Press:  03 March 2011

Chang-Dong Yeo
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Andreas A. Polycarpou
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
James D. Kiely
Affiliation:
Seagate Research, Pittsburgh, Pennsylvania 15222
Yiao-Tee Hsia
Affiliation:
Seagate Research, Pittsburgh, Pennsylvania 15222
Corresponding
E-mail address:
Get access

Abstract

The hardness and elastic modulus of ultra thin amorphous carbon overcoat (COC) films were measured using a recently developed sub-nm nanoindentation system. The carbon overcoat film thickness was varied to be 2.5 nm, 5 nm, and 10 nm on a glass substrate with a 2 nm titanium interlayer. A very sharp indenting tip, which was a cube corner tip with a radius of 44 nm, was used for the experiments. It was found that the mechanical properties of sub-10 nm film thicknesses can be reliably measured using the sub-nm indentation system and a sharp indenting tip. As the thickness of the carbon overcoat increased, so too did the surface roughness. For all three film thickness samples, the trends of hardness and elastic modulus values with the contact depth are very similar. When the contact depth is smaller than the film thickness, the measured values of hardness and elastic modulus are higher than those of the glass substrate, and gradually decrease and then approach the values of glass substrate. When the contact depth is larger than the film thickness, the measured values approximate those of the glass substrate. The thinner film shows higher values of hardness and elastic modulus near the surface, which indicates that mechanical properties do change with film thickness and that measurements made on thicker films and extrapolated to thinner films may lead to incorrect conclusions.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1Yamamoto, T., Kasamatsu, Y., and Hyodo, H.: Advanced stiction-free slider and DLC overcoat. FUJITSU Sci. Tech. J. 37(2), 201 (2001).Google Scholar
2Chaudhari, P.: Information technology: A play of materials. MRS Bull. 27(7), 55 (2000).CrossRefGoogle Scholar
3Bhushan, B. and Li, X.: Nanomechanical characterization of solid surfaces and thin films. Int. Mater. Rev. 48(3), 125 (2003).CrossRefGoogle Scholar
4Charitidis, C. and Logothetidis, S.: Nanomechanical and nanotribological properties of carbon based films. Thin Solid Films 482, 120 (2005).CrossRefGoogle Scholar
5Lemoine, P., Zhao, J.F., Quinn, J.P., McLaughlin, J.A., and Maguire, P.: Hardness measurements at shallow depths on ultra-thin amorphous carbon films deposited onto silicon and Al2O3-TiC substrates. Thin Solid Films 379, 166 (2000).CrossRefGoogle Scholar
6Doerner, M.F. and Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
7Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
8Cheng, Y. and Cheng, C.: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).CrossRefGoogle Scholar
9Kohzaki, M., Matsumuro, A., Hayashi, T., Muramatsu, M., and Yamaguchi, K.: Preparation of carbon nitride thin films by ion-beam-assisted deposition and their mechanical properties. Thin Solid Films 308–309, 239 (1997).CrossRefGoogle Scholar
10Scharf, T.W., Deng, H., and Barnard, J.A.: Nanowear/nanomechanical testing and the role of stress in sputtered CNx overcoats. J. Appl. Phys. 81(8), 5393 (1997).CrossRefGoogle Scholar
11Xu, Z. and Rowcliffe, D.: Finite element analysis of substrate effects on indentation behaviour of thin films. Thin Solid Films 447–448, 399 (2004).CrossRefGoogle Scholar
12Buckle, H.: The Science of Hardness Testing and Its Research Applications (American Society for Metals, Metals Park, OH, 1973), pp. 453.Google Scholar
13Logothetidis, S.: Surface and interface properties of amorphous carbon layers on rigid and flexible substrates. Thin Solid Films 482, 9 (2005).CrossRefGoogle Scholar
14Yu, N., Bonin, W.A., and Polycarpou, A.A.: High-resolution capacitive load-displacement transducer and its application in nanoindentation and adhesion force measurements. Rev. Sci. Instrum. 76, 045109 (2005).CrossRefGoogle Scholar
15Anoikin, E.V., Yang, M.M., Chao, J.L., and Russak, M.A.: Magnetic hard disk overcoats in the 3–5 nm thickness range. J. Appl. Phys. 85(8), 5606 (1999).CrossRefGoogle Scholar
16Grannen, K.J., Ma, X., and Thangaraj, R.: Ion beam deposition of carbon overcoats for magnetic thin film media. IEEE Trans. Magn. 36(1), 120 (2000).CrossRefGoogle Scholar
17Chudoba, T. and Richter, F.: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 148, 191 (2001).CrossRefGoogle Scholar
18Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).CrossRefGoogle Scholar
19Butterworth, S.: On the theory of filter amplifiers. Wireless Engineer. 7, 536 (1930).Google Scholar
20Stout, K.J., Sullivan, P.J., Dong, W.P., Mainsah, E., Lou, N., Mathia, T., and Zahouani, H.: The Development of Methods for the Characterization of Roughness in Three Dimension (Commission of the European Communities, Printed in Univ. of Birmingham, Report EUR 15178 EN, 1993).Google Scholar
21Suh, A.Y. and Polycarpou, A.A.: Effect of molecularly thin lubricant on roughness and adhesion of magnetic disks intended for extremely high-density recording. Tribol. Lett. 15(4), 365 (2003).CrossRefGoogle Scholar
22Mbise, G.W., Niklasson, G.A., and Granqvist, C.G.: Scaling of surface roughness in evaporated calcium fluoride films. Solid State Comm. 97(11), 965 (1996).CrossRefGoogle Scholar
23Nanda, K.K., Sarangi, S.N., and Sahu, S.N.: Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films. Appl. Surf. Sci. 133, 293 (1998).CrossRefGoogle Scholar
24Yang, H.N., Zhao, Y.P., Wang, G.C., and Lu, T.M.: Noise-induced roughening evolution of amorphous Si films grown by thermal evaporation. Phys. Rev. Lett. 76(20), 3774 (1996).CrossRefGoogle ScholarPubMed
25Liu, Z.J., Jiang, N., Shen, Y.G., and Mai, Y.W.: Atomic force microscopy study of surface roughening of sputter-deposited TiN thin films. J. Appl. Phys. 92(7), 3559 (2002).CrossRefGoogle Scholar
26Family, F. and Vicsek, T.: Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A 18, L75 (1985).CrossRefGoogle Scholar
27Schwoebel, R.L. and Shipsey, E.J.: Step motion on crystal surfaces. Appl. Phys. 37, 3682 (1966).CrossRefGoogle Scholar
28Schwoebel, R.L.: Step motion on crystal surfaces. II. J. Appl. Phys. 40, 614 (1968).CrossRefGoogle Scholar
29Villain, J.: Continuum models of crystal growth from atomic beams with and without desorption. J. Phys. (France) I 1, 19 (1991).CrossRefGoogle Scholar
30Siegert, M. and Plischke, M.: Slope selection and coarsening in molecular beam epitaxy. Phys. Rev. Lett. 73, 1517 (1994).CrossRefGoogle ScholarPubMed
31Bull, S.J. and Korsunsky, A.M.: Mechanical properties of thin carbon overcoats. Tribol. Int. 31(9), 547 (1998).CrossRefGoogle Scholar
32Lichinchi, M., Lenardi, C., Haugt, J., and Vitali, K.: Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312, 240 (1998).CrossRefGoogle Scholar
33Xu, Z. and Rowcliffe, D.: Nanoindentation on diamond-like carbon and alumina coatings. Surf. Coat. Technol. 161, 44 (2002).CrossRefGoogle Scholar
34Monteiro, O.R.: Thin film synthesis by energetic condensation. Annu. Rev. Mater. Res. 31, 111 (2001).CrossRefGoogle Scholar
35Lifshitz, Y.: Diamondlike carbon—present status. Diamond Rel. Mater. 8, 1659 (1999).CrossRefGoogle Scholar
36Veprek, S. and Argon, A. S.: Mechanical properties of superhard nanocomposites. Surf. Coat. Technol. 146–147, 175 (2001).CrossRefGoogle Scholar
37Montgomery, D.C.: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, 2001), p. 96.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 25 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanomechanical properties of sub-10 nm carbon film overcoats using the nanoindentation technique
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanomechanical properties of sub-10 nm carbon film overcoats using the nanoindentation technique
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanomechanical properties of sub-10 nm carbon film overcoats using the nanoindentation technique
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *