Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-30T16:56:03.179Z Has data issue: false hasContentIssue false

Nanocrystallization of Cu–(Zr or Hf)–Ti metallic glasses

Published online by Cambridge University Press:  31 January 2011

D. V. Louzguine*
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980–8577, Japan
A. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980–8577, Japan
*
a)c)Address all correspondence to this author.dmluz@imr.tohoku.ac.jp
Get access

Abstract

Crystallization of the Cu60Zr30Ti10 and Cu60Hf25Ti15 metallic glasses was studied by x-ray diffractometry, transmission electron microscopy, differential scanning and isothermal calorimetries. Metastable Cu–Zr–Ti and Cu–Hf–Ti cubic phases primarily precipitated in the Cu60Zr30Ti10 and Cu60Hf25Ti15 metallic glasses. The Cu60Zr30Ti10metallic glass crystallizes with low energy barrier for nucleation while crystallization of the Cu60Hf25Ti15 metallic glass takes place by nucleation and diffusion-controlled growth of cubic Cu–Hf–Ti phase particles with constant nucleation rate. The Cu60Hf25Ti15 metallic glass is characterized by a low activation energy for nucleation.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lin, X.H. and Johnson, W.L., J. Appl. Phys. 78, 6514 (1995).Google Scholar
2.Zhang, T. and Inoue, A., Mater. Trans. JIM 40, 301 (1999).Google Scholar
3.Li, C., Saida, J., Kiminami, M., and Inoue, A., J. Non-Cryst. Solids 261, 108 (2000).CrossRefGoogle Scholar
4.Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
5.Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Mater. Trans. JIM 42, 1149 (2001).CrossRefGoogle Scholar
6.Altounian, Z., Guo-hua, T., and Storm-Olsen, J.O., J. Appl. Phys. 53, 4755 (1982).CrossRefGoogle Scholar
7.Woychik, C.G. and Massalski, T.B., Z. Metallkd. 79, 149 (1988).Google Scholar
8.Kissinger, H.E., J. Res. Natl. Bur, Stand (U.S.) 57, 217 (1956).CrossRefGoogle Scholar
9.Johnson, M.W.A. and Mehl, K.F., Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).Google Scholar
10.Avrami, M., J. Chem. Phys. 9, 177 (1941).Google Scholar
11.Kolmogorov, A.N., Isz. Akad. Nauk. USSR, Ser. Matem. 3, 355 (1937) (in Russian).Google Scholar
12.Christian, J.W., The Theory of Transformations in Metals, Alloys (Pergamon Press, Oxford, U.K., 1975), p. 542.Google Scholar
13.Wells, A.F., Structural Inorganic Chemistry (Oxford University Press, Oxford, U.K., 1984), p. 1382.Google Scholar
14.Louzguine, D.V. and Inoue, A., Mater. Res. Bull. 34, 1991 (1999).CrossRefGoogle Scholar
15.Barbee, T.W. Jr., Walmsley, R.G., Marshall, A.F., Keith, D.L., and Stevenson, D.A., Appl. Phys. Lett. 38, 132 (1981).CrossRefGoogle Scholar
16.Schultz, R., Samwer, K., and Johnson, W.L., J. Non-Cryst. Solids 62, 997 (1984).Google Scholar
17.Loffler, J.F. and Johnson, W.L., Mater. Sci. Eng. A 304–306, 670 (2001).CrossRefGoogle Scholar
18.Inoue, A., Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
19.Sachdev, S. and Nelson, D.R., Phys. Rev. B 32, 4592 (1985).Google Scholar
20.Kelton, K.F., Int. Mater. Rev. 38, 105 (1993).CrossRefGoogle Scholar
21.Louzguine, D.V., Takeuchi, A., and Inoue, A., J. Non-Cryst. Solids 289, 196 (2001).CrossRefGoogle Scholar
22.Boer, F.R. De, Boom, F.R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K., Cohesion in Metals (Elsevier Science Publishers, North-Holland, Amsterdam, The Netherlands, 1988), p. 250.Google Scholar
23.Massalski, T.B., Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), p. 1444.Google Scholar
24.Massalski, T.B., Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990), p. 2129.Google Scholar
25.Louzguine, D.V. and Inoue, A., Appl. Phys. Lett. 79, 3410 (2001).CrossRefGoogle Scholar
26.James, A.M. and Lord, M.P., Macmillan's Chemical and Physical Data (Macmillan, London, U.K., 1992), p. 565.Google Scholar
27.Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M., Mater. Trans. JIM 39, 623 (1998).Google Scholar
28.Nevitt, M.V., Downey, J.W., and Morris, R.A., Trans. Metall. Soc. AIME 218, 1019 (1960).Google Scholar
29.Saida, J., Matsushita, M., Li, C., and Inoue, A., Appl. Phys. Lett. 76, 3558 (2000).CrossRefGoogle Scholar
30.Louzguine, D.V., Ko, M.S., Ranganathan, S., and Inoue, A., J. Nanosci. Nanotechnol. 1, 185 (2001).CrossRefGoogle Scholar
31.Ackermann, R.J., Garg, S.P., and Rauh, E.G., J. Am. Ceram. Soc. 60, 341 (1977).Google Scholar
32.Elliot, J.F., Metall. Trans. B 7, 17 (1976).CrossRefGoogle Scholar