Hostname: page-component-5d59c44645-jb2ch Total loading time: 0 Render date: 2024-02-22T20:18:38.123Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of Phase Separation Behavior in a Cu-Co Alloy Nanoparticle

Published online by Cambridge University Press:  31 January 2011

Jae-Hyeok Shim
Affiliation:
Nano-materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
Byeong-Joo Lee
Affiliation:
Materials Evaluation Center, Korea Research Institute of Standards and Science, Yusong P.O. Box 102, Taejon 305-600, Korea
Jae-Pyoung Ahn
Affiliation:
Nano-materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
Young Whan Cho*
Affiliation:
Nano-materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
Jong-Ku Park
Affiliation:
Nano-materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
*
a)Address all correspondence to this author. e-mail: oze@kist.re.kr
Get access

Abstract

The phase separation behavior in a Cu–Co nanoparticle was investigated using Monte Carlo (MC) simulation. The modified embedded atom method (MEAM) was adopted to describe the interatomic potentials for the Cu–Co alloy system. Some of the cross potential parameters were fitted with experimental data such as mixing enthalpy and lattice constants of Cu–Co alloys. The present MC simulation combined with the MEAM potential describes well the phase separation between face-centered-cubic (fcc) Cu and fcc Co during the annealing of the particle.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Daw, M.S. and Baskes, M.I., Phys. Rev. Lett. 50, 1285 (1983).Google Scholar
2.Daw, M.S. and Baskes, M.I., Phys. Rev. B 29, 6443 (1984).Google Scholar
3.Baskes, M.I., Phys. Rev. B 46, 2727 (1992).Google Scholar
4.Baskes, M.I. and Johnson, R.A., Modelling Simul. Mater. Sci. Eng. 2, 147 (1994).Google Scholar
5.Baskes, M.I., Mater. Chem. Phys. 50, 152 (1997).Google Scholar
6.Baskes, M.I., Angelo, J.E., and Bisson, C.L., Modelling Simul. Mater. Sci. Eng. 2, 505 (1994).Google Scholar
7.Gente, C., Oehring, M., and Bormann, R., Phys. Rev. B. 48, 13244 (1993).Google Scholar
8.Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., J. Chem. Phys. 21, 1087 (1953).Google Scholar
9.Yang, G.Y., Zhu, J., Wang, W.D., Zhang, Z., and Zhu, F.W., Mater. Res. Bull. 35, 875 (2000).Google Scholar
10.Ahn, J-P., Korea Institute of Science and Technology (2001, unpublished).Google Scholar
11.Tyson, W.R. and Miller, W.A., Surf. Sci. 62, 267 (1977).Google Scholar
12.Phillips, V.A., Acta Metall. 14, 271 (1966).Google Scholar
13.Satoh, S. and Johnson, W.C., Metall. Trans. A 23A, 2761 (1992).Google Scholar
14.Hyland, R.W. Jr., Asta, M., Foiles, S.M., and Rohrer, C.L., Acta Mater. 46, 4667 (1998).Google Scholar
15.Servi, I.S. and Turnbull, D., Acta Metall. 14, 161 (1966).Google Scholar
16.Ardell, A.J., Acta Metall. 20, 61 (1972).Google Scholar
17.Shiflet, G.J., Lee, Y.W., Aaronson, H.I., and Russell, K.C., Scripta Metall. 15, 719 (1981).Google Scholar
18.Parkin, S.S.P., Bhadra, R., and Roche, K.P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar