Hostname: page-component-6d856f89d9-gndc8 Total loading time: 0 Render date: 2024-07-16T04:55:23.937Z Has data issue: false hasContentIssue false

Microstructural evolution during decomposition and crystallization of the Cu60Zr20Ti20 amorphous alloy

Published online by Cambridge University Press:  03 March 2011

A. Concustell
Affiliation:
Department of Physics, Faculty of Sciences, Universitat AutòAgonoma Barcelona, Edifici Cc, 08193 Bellaterra, Barcelona, Spain
Á. Révész
Affiliation:
Department of Physics, Faculty of Sciences, Universitat AutòAgonoma Barcelona, Edifici Cc, 08193 Bellaterra, Barcelona, Spain
S. Suriñach
Affiliation:
Department of Physics, Faculty of Sciences, Universitat AutòAgonoma Barcelona, Edifici Cc, 08193 Bellaterra, Barcelona, Spain
L.K. Varga
Affiliation:
Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B. 49, Hungary
G. Heunen
Affiliation:
European Synchrotron Radiation Facilities (ESRF), Grenoble, France 38042
M.D. Baró*
Affiliation:
Department of Physics, Faculty of Sciences, Universitat AutòAgonoma Barcelona, Edifici Cc, 08193 Bellaterra, Barcelona, Spain
*
b)Address all correspondence to this author. e-mail: Dolors.Baro@uab.es
Get access

Abstract

The effect of continuous heating and isothermal heat treatments on ductile Cu60Zr20Ti20 amorphous ribbons was monitored by differential scanning calorimetry, x-ray diffraction, synchrotron radiation transmission, and high-resolution transmission electron microscopy. Upon continuous heating, the alloy exhibited a glass transition, followed by a supercooled liquid region and two exothermic crystallization stages. Decomposition of the amorphous phase was also observed. The first crystallization stage resulted in the formation of a nanocomposite structure with hexagonal Cu51Zr14 particles embedded in the amorphous matrix, while in the second crystallization stage hexagonal Cu2TiZr-like phase was precipitated. The released enthalpies were 19 J/g and 30 J/g for each crystallization stage. Crystallization kinetics was studied by the classical nucleation theory. Deviations from the Johnson–Mehl–Avrami–Kolmogorov theory may be explained by the contribution of the decomposition of the amorphous matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lin, X.H. and Johnson, W.L.: J. Appl. Phys. 78, 6541 (1995).Google Scholar
2He, Y., Schwarz, R.B., Mandrus, D. and Jacobson, L.: J. Non-Cryst. Solids 205–207, 602 (1996).Google Scholar
3Johnson, W.L.: MRS Bull. 24 1042 (1999).CrossRefGoogle Scholar
4Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: Acta Mater. 49, 2645 2001;CrossRefGoogle Scholar
Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., J. Non-Cryst. Solids 304, 200 (2002).Google Scholar
5Révész, Á., Concustell, A., Varga, L.K., Suriñnach, S. and Baró, M.D.: J. Mater. Sci. 2004 (in press).Google Scholar
6Inoue, A., Chen, S. and Masumoto, T.: Mater. Sci. Eng. A 346–350, 346 1994;Google Scholar
Busch, R., Schneider, S., Peker, A., and Johnson, W.L., Appl. Phys. Lett. 67 1544 (1995);CrossRefGoogle Scholar
Antonione, C., Spriano, S., Rizzi, P., Baricco, M., and Battezzati, L., J. Non-Cryst. Solids 232–234 127 (1998).CrossRefGoogle Scholar
7Liu, W., Johnson, W.L., Schneider, S., Geyer, U. and Thiyagarajan, P.: Phys. Rev. B 59, 11755 1999;CrossRefGoogle Scholar
Jiang, J.Z., Saida, J., Kato, H., Ohsuna, T., and Inoue, A., Appl. Phys. Lett. 82, 4041 (2003).CrossRefGoogle Scholar
8Geyer, U., Schneider, S., Jonhson, W.L., Qiu, Y., Tombrello, T.A. and Macht, M.P.: Phys. Rev. Lett. 75, 2364 (1995).CrossRefGoogle Scholar
9Desré, P.J.: Philos. Mag. Lett. 80, 401 2000;CrossRefGoogle Scholar
Kelton, K.F., Philos. Mag. Lett. 77, 337 (1998).CrossRefGoogle Scholar
10Kissinger, H.E.: Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
11Young, R.A.: The Rietveld Method (Oxford University Press, New York, 1995);Google Scholar
Lutterotti, L. and Scardi, P., J. Appl. Cryst. 23, 246 1990; L. Lutterotti and S. Gialanella, Acta Mater. 46, 101 (1997).CrossRefGoogle Scholar
12Kvick, A. and Wulff, M.: Rev. Sci. Instrum. 63, 1073 1992; M. Krumrey, A. Kvick, and W. Schwegle, Rev. Sci. Instrum. 66, 1715 1995; J. Susini, R. Baker, M. Krumrey, W. Schwegle, and A. Kvick, Rev. Sci. Instrum. 66, 2048 (1995).Google Scholar
13Johnson, M.W.A. and Mehl, K.F.: Trans. Am. Inst. Min. Metall. Pet. Eng. 135, 416 (1939).Google Scholar
14Avrami, M.: J. Chem. Phys. 7 1103 (1939); M. Avrami, J. Chem. Phys. 8, 212 (1940).Google Scholar
15Avrami, M.: J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
16Kolmogorov, A.N.: Izv. Akad. Nauk USSR. Ser. Matem. 3, 355 (1937).Google Scholar
17Christian, J.W.: The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon, Oxford, 1975).Google Scholar
18Révész, Á., Varga, L.K., Suriñach, S. and Baró, M.D.: J. Mater. Res. 17, 2140 (2002).Google Scholar
19Aronin, A.S., Abrosimova, G.E., Gurov, A.F., Yu, V. Kiŕanov and Molokanov, V.V.: Mater. Sci. Eng. A 304–306, 375 (2001).Google Scholar
20Liu, X.D., Nagumo, M. and Umemoto, M.: Mater. Sci. Eng. A 252, 179 (1998).Google Scholar
21Botstein, O. and Rabinkin, A.: Mater. Sci. Eng. A 188, 305 (1994).CrossRefGoogle Scholar
22Arroyave, R., Eagar, T.W. and Kaufman, L.: J. Alloys Comp. 351, 158 (2003).CrossRefGoogle Scholar
23Jiang, J. Z., Yang, B., Saksl, K., Franz, H. and Pryds, N.: J. Mater. Res. 18, 895 (2003).CrossRefGoogle Scholar
24Louzguine, D.V. and Inoue, A.: J. Mater. Res. 17, 2112 (2002).Google Scholar
25Glade, S.C., Löffler, J.F., Bossuyt, S., Johnson, W.L. and Miller, M.K.: J. Appl. Phys. 89, 1573 (2001).CrossRefGoogle Scholar
26Foley, J.C., Allen, D.R. and Perpezko, J.H.: Scr. Mater. 35(5), 655 (1996); M. Calin and U. Köster, Mater. Sci. Forum 269–272 749 (1998).CrossRefGoogle Scholar
27Révész, Á., Donnadieu, P., Simon, J.P., Guyot, P. and Ochin, P.: Philos. Mag. Lett. 81, 767 (2001).Google Scholar
28Xing, L.Q., Bertrand, C., Dallas, J.P. and Cornet, M.: Mater. Sci. Eng. A 241, 216 (1998).CrossRefGoogle Scholar
29Löffler, J.F. and Johnson, W.L.: Appl. Phys. Lett. 76, 3395 (2000).Google Scholar
30Barbee, T.W. Jr.Walmsley, R.G., Marshall, A.F., Keith, D.L. and Stevenson, D.A.: Appl. Phys. Lett. 38, 132 (1981).CrossRefGoogle Scholar
31Schultz, R., Samwer, K. and Johnson, W.L.: J. Non-Cryst. Solids 62, 997 (1984).Google Scholar
32Li, C., Saida, J., Matsushita, M. and Inoue, A.: Mater. Sci. Eng. A 304–306, 380 (2001).CrossRefGoogle Scholar
33Liu, W. and Johnson, W.L.: J. Mater. Res. 11, 2388 (1996).CrossRefGoogle Scholar
34Woychik, C.G. and Massalski, T.B.: Bd. 79, 149 (1988).Google Scholar