Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T00:35:59.107Z Has data issue: false hasContentIssue false

Mechanics analysis of femtosecond laser-induced blisters produced in thermally grown oxide on Si(100)

Published online by Cambridge University Press:  31 January 2011

Joel P. McDonald*
Affiliation:
Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109
M.D. Thouless*
Affiliation:
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109; and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
Steven M. Yalisove
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
*
a)Address all correspondence to this author. e-mail: jpmcdona@umich.edu
b)Address all correspondence to this author. e-mail: thouless@umich.edu
Get access

Abstract

Blister features produced by laser-induced delamination of silicon dioxide from silicon substrates were analyzed with thin-film buckling mechanics. These analyses revealed the role of the interaction between the material and the femtosecond (fs)-pulsed laser on blister formation. In particular, it was deduced that the magnitude of the compressive residual film stress within the irradiated region appeared to exceed the intrinsic residual stress obtained from wafer curvature techniques. This apparent increase in the compressive stress after fs-pulsed laser irradiation may be caused by a modification of the oxide, which resulted in a local rarefaction of the film. The results demonstrated important features of the interaction between materials and fs-pulsed laser, including the presence of subtle modification thresholds and the limited role of thermal effects.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ben-Yakar, A., Byer, R.L.Femtosecond laser ablation properties of borosilicate glass. J. Appl. Phys. 96, 5316 (2004)CrossRefGoogle Scholar
2.Hwang, D.J., Choi, T.Y., Grigoropoulos, C.P.Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass. Appl. Phys. A 79, 605 (2004)CrossRefGoogle Scholar
3.Ke, K., Hasselbrink, E.F., Hunt, A.J.Rapidly prototyped three dimensional nanofluidic channel network in glass substrates. Anal. Chem. 77, 5083 (2005)CrossRefGoogle ScholarPubMed
4.Schaffer, C.B., Broduer, A., Garcia, J.F., Mazur, E.Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt. Lett. 26, 93 (2001)CrossRefGoogle ScholarPubMed
5.Bonse, J., Baudach, S., Kruger, J., Kautek, W., Lenzner, M.Femtosecond laser ablation of silicon-modification thresholds and morphology. Appl. Phys. A 74, 19 (2002)CrossRefGoogle Scholar
6.Bonse, J., Brzezinka, K.W., Meixner, A.J.Modifying single-crystalline silicon by femtosecond laser pulses: An analysis by micro-Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Appl. Surf. Sci. 221, 215 (2004)CrossRefGoogle Scholar
7.Borowiec, A., Haugen, H.K.Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82, 4462 (2003)CrossRefGoogle Scholar
8.Borowiec, A., Mackenzie, M., Weatherly, G.C., Haugen, H.K.Femtosecond laser pulse ablation of GaAs and InP: Studies utilizing scanning and transmission electron microscopy. Appl. Phys. A 77, 411 (2003)CrossRefGoogle Scholar
9.Choi, T.Y., Grigoropoulos, C.P.Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon. J. Appl. Phys. 92, 4918 (2002)CrossRefGoogle Scholar
10.Dong, Y., Sakata, H., Molian, P.Femtosecond pulsed laser ablation of diamond-like carbon films on silicon. Appl. Surf. Sci. 252, 352 (2005)CrossRefGoogle Scholar
11.Her, T-H., Finlay, R.J., Wu, C., Deliwala, S., Mazur, E.Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett. 73, 1673 (1998)CrossRefGoogle Scholar
12.Sheehy, M.A., Winston, L., Carey, J.E., Friend, C.M., Mazur, E.Role of the background gas in the morphology and optical properties of laser-microstructured silicon. Chem. Mater. 17, 3582 (2005)CrossRefGoogle Scholar
13.Tran, D.V., Zheng, H.Y., Lam, Y.C., Murukeshan, V.M., Chai, J.C., Hardt, D.E.Femtosecond laser-induced damage morphologies of crystalline silicon by sub-threshold pulses. Opt. Lasers Eng. 43, 977 (2005)CrossRefGoogle Scholar
14.Tull, B.R., Carey, J.E., Mazur, E., McDonald, J.P., Yalisove, S.M.Silicon surface morphologies after femtosecond laser irradiation. MRS Bull. 31, 626 (2006)CrossRefGoogle Scholar
15.Weingartner, M., Elschner, R., Bostanjoglo, O.Patterning of silicon—Differences between nanosecond and femtosecond laser pulses. Appl. Surf. Sci. 138–139, 499 (1999)CrossRefGoogle Scholar
16.Zeng, X., Mao, X.L., Greif, R., Russo, R.E.Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl. Phys. A 80, 237 (2005)CrossRefGoogle Scholar
17.Bekesi, J., Klein-Wiele, J-H., Simon, P.Efficient submicron processing of metals with femtosecond UV pulses. Appl. Phys. A 76, 355 (2003)Google Scholar
18.Furusawa, K., Takahashi, K., Kumagai, H., Midorikawa, K., Obara, M.Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser. Appl. Phys. A 69, S359 (1999)CrossRefGoogle Scholar
19.Le Harzic, R., Breitling, D., Weikart, M., Sommer, S., Fohl, C., Valette, S., Donnet, C., Audouard, E., Dausinger, F.Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps. Appl. Surf. Sci. 249, 322 (2005)CrossRefGoogle Scholar
20.Ma, S., McDonald, J.P., Tryon, B., Yalisove, S.M., Pollock, T.M.Femtosecond laser ablation regimes in a single crystal superalloy. Metall. Mater. Trans. A 38, 2349 (2007)CrossRefGoogle Scholar
21.Nedialkov, N.N., Imamova, S.E., Atanasov, P.A.Ablation of metals by ultrashort laser pulses. J. Phys. D: Appl. Phys. 37, 638 (2004)CrossRefGoogle Scholar
22.Nolte, S., Momma, C., Jacobs, H., Tunnermann, A., Chichkov, B.N., Wellegehausen, B., Welling, H.Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716 (1997)CrossRefGoogle Scholar
23.Preuss, S., Demchuk, A., Stuke, M.Subpicosecond UV laser-ablation of metals. Appl. Phys. A 61, 33 (1995)CrossRefGoogle Scholar
24.Zhu, X., Villeneuve, D.M., Naumov, A.Y., Nikumb, S., Corkum, P.B.Experimental study of drilling sub-10 μm holes in thin metal foils with femtosecond laser pulses. Appl. Surf. Sci. 152, 138 (1999)CrossRefGoogle Scholar
25.Chen, J.K., Beraun, J.E.Modelling of ultrashort laser ablation of gold films in vacuum. J. Opt. A: Pure Appl. Opt. 5, 168 (2003)CrossRefGoogle Scholar
26.Le Drogoff, B., Vidal, F., Von Kaenel, Y., Chaker, M., Johnston, T.W., Laville, S., Sabsabi, M., Margot, J.Ablation of aluminum thin films by ultrashort laser pulses. J. Appl. Phys. 89, 8247 (2001)CrossRefGoogle Scholar
27.Meshcheryakov, Y.P., Bulgakova, N.M.Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation. Appl. Phys. A 82, 363 (2006)CrossRefGoogle Scholar
28.Park, M., Chon, B.H., Kim, H.S., Jeoung, S.C., Kim, D., Lee, J-I., Chu, H.Y., Kim, H.R.Ultrafast laser ablation of indium tin oxide thin films for organic light-emitting diode applications. Opt. Lasers Eng. 44, 138 (2006)CrossRefGoogle Scholar
29.Yasumaru, N., Miyazaki, K., Kiuchi, J.Femtosecond-laser-induced nanostructure formed on hard thin films TiN and DLC. Appl. Phys. A 76, 983 (2003)CrossRefGoogle Scholar
30.Zhang, G., Gu, D., Jiang, X., Chen, Q., Gan, F.Femtosecond laser pulse irradiation of Sb-rich AgInSbTe films: Scanning electron microscopy and atomic force microscopy investigations. Appl. Phys. A 80, 1039 (2005)CrossRefGoogle Scholar
31.Reis, D.A., Gaffney, K.J., Gilmer, G.H., Torralva, B.Ultrafast dynamics of laser excited solids. MRS Bull. 31, 601 (2006)CrossRefGoogle Scholar
32.Joglekar, A.P., Liu, H., Spooner, G.J., Meyhofer, E., Mourou, G., Hunt, A.J.A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B 77, 25 (2003)CrossRefGoogle Scholar
33.Gomez, D., Goenaga, I., Lizuain, I., Ozaita, M.Femtosecond laser ablation for microfluidics. Opt. Eng. 44, 051105 (2005)Google Scholar
34.Kim, T.N., Campbell, K., Groisman, A., Kleinfeld, D., Schaffer, C.B.Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl. Phys. Lett. 86, 201106 (2005)CrossRefGoogle Scholar
35.Chan, J.W., Huser, T.R., Risbud, S.H., Krol, D.M.Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses. Appl. Phys. A 76, 367 (2003)CrossRefGoogle Scholar
36.Davis, K.M., Miura, K., Sugimoto, N., Hirao, K.Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729 (1996)CrossRefGoogle ScholarPubMed
37.Itoh, K., Watanabe, W., Nolte, S., Schaffer, C.B.Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620 (2006)CrossRefGoogle Scholar
38.Will, M., Nolte, S., Chichkov, B.N., Tunnermann, A.Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses. Appl. Opt. 41, 4360 (2002)CrossRefGoogle ScholarPubMed
39.Zoubir, A., Richardson, M., Canioni, L., Brocas, A., Sarger, L.Optical properties of infrared femtosecond laser-modified fused silica and appliation to waveguide fabrication. J. Opt. Soc. Am. B 22, 2138 (2005)CrossRefGoogle Scholar
40.McDonald, J.P., Mistry, V.R., Ray, K.E., Nees, J.A., Moody, N.R., Yalisove, S.M.Femtosecond-laser-induced delamination and blister formation in thermal oxide films on silicon (100). Appl. Phys. Lett. 88, 153121 (2006)CrossRefGoogle Scholar
41.McDonald, J.P., Mistry, V.R., Ray, K.E., Yalisove, S.M.Femtosecond pulsed laser direct write production of nano- and microfluidic channels. Appl. Phys. Lett. 88, 183113 (2006)CrossRefGoogle Scholar
42.Serrano, J.R., Cahill, D.G.Micron-scale buckling of SiO2 on Si. J. Appl. Phys. 92, 7606 (2002)CrossRefGoogle Scholar
43.Faulhaber, S., Mercer, C., Moon, M.W., Hutchinson, J.W., Evans, A.G.Buckling delamination in compressed multilayers on curved substrates with accompanying ridge cracks. J. Mech. Phys. Solids 54, 1004 (2006)CrossRefGoogle Scholar
44.Hutchinson, J.W., Suo, Z.Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1992)CrossRefGoogle Scholar
45.Moon, M.W., Jensen, H.M., Hutchinson, J.W., Oh, K.H., Evans, A.G.The characterization of telephone cord buckling of compressed thin films on substrates. J. Mech. Phys. Solids 50, 2355 (2002)CrossRefGoogle Scholar
46.Jia, J., Li, M., Thompson, C.V.Amorphization of silicon by femtosecond laser pulses. Appl. Phys. Lett. 84, 3205 (2004)CrossRefGoogle Scholar
47.Evans, A.G., Hutchinson, J.W.On the mechanics of delamination and spalling in compressed films. Int. J. Solids Struct. 20, 455 (1984)CrossRefGoogle Scholar
48.Hutchinson, J.W., Thouless, M.D., Liniger, E.G.Growth and configurational stability of circular, buckling-driven film delaminations. Acta Metall. Mater. 40, 295 (1992)CrossRefGoogle Scholar
49.Jensen, H.M.Energy release rates and stability of straight-sided, thin-film delaminations. Acta Metall. Mater. 41, 601 (1993)CrossRefGoogle Scholar
50.Marshall, D.B., Evans, A.G.Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J. Appl. Phys. 56, 2632 (1984)CrossRefGoogle Scholar
51.Bennett, S.J., Devries, K.L., Williams, M.L.Adhesive fracture mechanics. Int. J. Fract. 10, 33 (1974)CrossRefGoogle Scholar
52.Jensen, H.M.The blister test for interface toughness measurement. Eng. Fract. Mech. 40, 475 (1993)CrossRefGoogle Scholar
53.Jensen, H.M., Thouless, M.D.Effects of residual stresses in the blister test. Int. J. Solids Struct. 30, 779 (1993)CrossRefGoogle Scholar
54.Parry, G., Colin, J., Coupeau, C., Foucher, F., Cimetiere, A., Grilhe, J.Effect of substrate compliance on the global unilateral post-buckling of coatings: AFM observations and finite element calculations. Acta Mater. 53, 441 (2005)CrossRefGoogle Scholar
55.Coupeau, C.From thin film and coating buckling structures to mechanical properties. Mater. Sci. Eng., A 483, 617 (2008)CrossRefGoogle Scholar
56.Lin, S.C.H., Pugacz-Muraszkiewicz, I.Local stress measurement in thin thermal SiO2 films on Si substrates. J. Appl. Phys. 43, 119 (1972)CrossRefGoogle Scholar
57.Kobeda, E., Irene, E.A.A measurement of intrinsic SiO2 film stress resulting from low temperature thermal oxidation of Si. J. Vac. Sci. Technol., B 4, 720 (1986)CrossRefGoogle Scholar
58.Stadtmueller, M.Mechanical stress of CVD-dielectrics. J. Electrochem. Soc. 139, 3669 (1992)CrossRefGoogle Scholar
59.Thouless, M.D., Hutchinson, J.W., Liniger, E.G.Plane-strain, buckling-driven delamination of thin films: Model experiments and mode-II fracture. Acta Metall. Mater. 40, 2639 (1992)CrossRefGoogle Scholar
60.Gupta, V., Argon, A.S., Cornie, J.A., Parks, D.M.Measurement of interface strength by laser-pulse-induced spallation. Mater. Sci. Eng., A 126, 105 (1990)CrossRefGoogle Scholar
61.Bhardwaj, V.R., Corkum, P.B., Rayner, D.M., Hnatovsky, C., Simova, E., Taylor, R.S.Stress in femtosecond-laser-written waveguides in fused silica. Opt. Lett. 29, 1312 (2004)CrossRefGoogle ScholarPubMed
62.Cordill, M.J., Bahr, D.F., Moody, N.R., Gerberich, W.W.Adhesion measurements using telephone cord buckles. Mater. Sci. Eng., A 443, 150 (2007)CrossRefGoogle Scholar
63.Li, S., Wang, J., Thouless, M.D.The effects of shear on delamination in layered materials. J. Mech. Phys. Solids 52, 193 (2004)CrossRefGoogle Scholar
64.Yu, H.H., Hutchinson, J.W.Influence of substrate compliance on buckling delamination of thin films. Int. J. Fract. 113, 39 (2002)CrossRefGoogle Scholar
65.Coupeau, C., Goudeau, P., Belliard, L., George, M., Tamura, N., Cleymand, F., Colin, J., Perrin, B., Grilhe, J.Evidence of plastic damage in thin films around buckling structures. Thin Solid Films 469, 221 (2004)CrossRefGoogle Scholar
66.Poumellec, B., Sudrie, L., Franco, M., Prade, B., Mysyrowicz, A.Femtosecond laser irradiation stress induced in pure silica. Opt. Express 11, 1070 (2003)CrossRefGoogle ScholarPubMed
67.Saliminia, A., Nguyen, N.T., Chin, S.L., Vallee, R.Densification of silica glass induced by 0.8 and 1.5 micrometer intense femtosecond laser pulses. J. Appl. Phys. 99, 093104 (2006)CrossRefGoogle Scholar