Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T00:42:07.730Z Has data issue: false hasContentIssue false

Intrinsic point defects in ternary MgCaSi: Ab initio investigation

Published online by Cambridge University Press:  01 August 2017

Ya-Ping Wang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Yan Yang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Xiao-Jing Yao
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Hai-Chen Wang
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Bi-Yu Tang*
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
a) Address all correspondence to this author. e-mail:
Get access


Nine possible native point defects in MgCaSi have been studied by employing density functional theory based ab initio calculations. The complex chemical potential limits are first determined using a two-dimension (∆μMg, ∆μCa) diagram, then the defect formation energies as a function of the atomic chemical potential are gained. The energetic results show that under Mg-rich conditions, the most favorable defect is MgCa rather than MgSi, while CaMg is predominant compared to CaSi under Ca-rich conditions. The bonding energy is first introduced to uncover the intrinsic feature of defect formation energy. The local geometric distortion around CaMg, MgSi, and CaSi antisite defects gradually increases due to the smaller atomic radii from Ca to Mg and Si, showing the important role of the geometrical mismatch. The density of states indicates that the higher stability of CaMg and MgCa originates from the smaller deviation of the Fermi level from the pseudo-gap.

Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Contributing Editor: Susan B. Sinnott



Wang, J., Zhang, Y-N., Hudon, P., Jung, I-H., Medraj, M., and Chartrand, P.: Experimental study of the phase equilibria in the Mg–Zn–Ag ternary system at 300 °C. J. Alloys Compd. 639, 593 (2015).CrossRefGoogle Scholar
Shang, S., Wang, W., Zhou, B., Wang, Y., Darling, K., Kecskes, L., Mathaudhu, S., and Liu, Z.: Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Mater. 67, 168 (2014).CrossRefGoogle Scholar
Agduk, S. and Gokoglu, G.: High-pressure elasticity and lattice dynamics of Mg2La from first principles. J. Alloys Compd. 520, 93 (2012).CrossRefGoogle Scholar
Aghion, E., Bronfin, B., Eliezer, D., Von Buch, F., Schumann, S., and Friedrich, H.E.: The art of developing new magnesium alloys for high temperature applications. Mater. Sci. Forum 419, 407418 (2003).CrossRefGoogle Scholar
Mordike, B.L.: Creep-resistant magnesium alloys. Mater. Sci. Eng., A 324, 103 (2002).CrossRefGoogle Scholar
Bakhsheshi-Rad, H.R., Hamzah, E., Fereidouni-Lotfabadi, A., Daroonparvar, M., Yajid, M.A.M., Mezbahul-Islam, M., Kasiri-Asgarani, M., and Medraj, M.: Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications. Mater. Corros. 65, 669 (2014).Google Scholar
Arora, H.S., Singh, H., and Dhindaw, B.K.: Parametric study of friction stir processing of magnesium-based AE42 alloy. J. Mater. Eng. Perform. 21, 2328 (2012).CrossRefGoogle Scholar
Hampl, M., Gröbner, J., and Schmid-Fetzer, R.: Experimental study of phase equilibria and solidification microstructures of Mg–Ca–Ce alloys combined with thermodynamic modeling. J. Mater. Sci. 42, 10023 (2007).CrossRefGoogle Scholar
Grobner, J., Chumak, I., and Schmid-Fetzer, R.: Experimental study of ternary Ca–Mg–Si phase equilibria and thermodynamic assessment of Ca–Si and Ca–Mg–Si systems. Intermetallics 11, 1065 (2003).CrossRefGoogle Scholar
Farahany, S., Bakhsheshi-Rad, H.R., Idris, M.H., Kadir, M.R.A., Lotfabadi, A.F., and Ourdjini, A.: In situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems. Thermochim. Acta 527, 180 (2012).CrossRefGoogle Scholar
Silsby, K., Sui, F., Ma, X., Kauzlarich, S.M., and Latturner, S.E.: Thermoelectric properties of Ba1.9Ca2.4Mg9.7Si7: A new silicide Zintl phase with the Zr2Fe12P7 structure type. Chem. Mater. 27, 6708 (2015).CrossRefGoogle Scholar
Whalen, J.B., Zaikina, J.V., Achey, R., Stillwell, R., Zhou, H., Wiebe, C.R., and Latturner, S.E.: Metal to semimetal transition in CaMgSi crystals grown from Mg–Al flux. Chem. Mater. 22, 1846 (2010).CrossRefGoogle Scholar
Pearson, G.L.: Mechanical Properties of Intermetallic Compounds, J. Am. Chem. Soc. 82, 5258 (1960).CrossRefGoogle Scholar
Zheng, J., Tian, X., Wei, X.L., Shao, L., Pan, X.Z., and Tang, B.Y.: Ab initio investigation of native point defects in Mg24Y5 . Mater. Chem. Phys. 167, 70 (2015).CrossRefGoogle Scholar
Ayub, G., Khwaja, F.A., and Haq, A.U.: In situ microhardness measurements of Ni–5 at.% Al alloy. J. Mater. Sci. Lett. 14, 802 (1995).CrossRefGoogle Scholar
Li, S. and Conrad, H.: Electric field strengthening during superplastic creep of Zn–5 wt% Al: A negative electroplastic effect. Scr. Mater. 39, 847 (1998).CrossRefGoogle Scholar
Korzhavyi, P.A., Pourovskii, L.V., Hugosson, H.W., Ruban, A.V., and Johansson, B.: Ab initio study of phase equilibria in TiC x . Phys. Rev. Lett. 88, 015505 (2002).CrossRefGoogle ScholarPubMed
Kulkova, S.E. and Bazhanov, D.I.: Point defects and mechanical behavior of titanium alloys and intermetallic compounds. J. Phys.: Conf. Ser. 29, 220 (2006).Google Scholar
Hu, L., Gao, H., Liu, X., Xie, H., Shen, J., Zhu, T., and Zhao, X.: Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects. J. Mater. Chem. 22, 16484 (2012).CrossRefGoogle Scholar
Hu, L., Zhu, T., Liu, X., and Zhao, X.: Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211 (2014).CrossRefGoogle Scholar
Du, Z., Zhu, T., Chen, Y., He, J., Gao, H., Jiang, G., Tritt, T.M., and Zhao, X.: Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J. Mater. Chem. 22, 6838 (2012).CrossRefGoogle Scholar
Dasgupta, T., Stiewe, C., Hassdorf, R., Zhou, A.J., Boettcher, L., and Mueller, E.: Effect of vacancies on the thermoelectric properties of Mg2Si1−x Sb x (0 ≤ x ≤ 0.1). Phys. Rev. B 83, 235207 (2011).CrossRefGoogle Scholar
Xie, H.H., Yu, C., Zhu, T.J., and Fu, C.G.: Increased electrical conductivity in fine-grained (Zr,Hf)NiSn based thermoelectric materials with nanoscale precipitates. Appl. Phys. Lett. 100, 740 (2012).CrossRefGoogle Scholar
Kai, N. and Averback, R.: Point Defects in Metals (Springer, Netherlands, 2005).Google Scholar
Kresse, G. and Furthmüller, J.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Perdew, J.P.: Generalized gradient approximations for exchange and correlation: A look backward and forward. Phys. B 172, 1 (1991).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Errata: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Hu, Q.M., Yang, R., Hao, Y.L., Xu, D.S., and Li, D.: Concentrated point defects in and order-disorder transition temperature of intermetallic compounds. Phys. Rev. Lett. 92, 185505 (2004).CrossRefGoogle ScholarPubMed
Monkhorst, H.J. and Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Eisenmann, B., Schafer, H., and Weiss, A.: Der Ubergang vom “geordneten” Anti-PbCl2-Gitter zum Anti-PbFCl-Gitter: Ternare Phasen ABX der Erdalkalimetalle mit Elementen der 4. Hauptgruppe (A = Ca, Sr, Ba; B = Mg; X = Si, Ge, Sn, Pb). Z. Anorg. Allg. Chem. 391, 241 (1972).CrossRefGoogle Scholar
Alahmed, Z. and Fu, H.: First-principles determination of chemical potentials and vacancy formation energies in PbTiO3 and BaTiO3 . Phys. Rev. B 76, 224101 (2007).CrossRefGoogle Scholar
Hosono, T., Kuramoto, M., Matsuzawa, Y., Momose, Y., Maeda, Y., Matsuyama, T., Tatsuoka, H., Fukuda, Y., Hashimoto, S., and Kuwabara, H.: Formation of CaMgSi at Ca2Si/Mg2Si interface. Appl. Surf. Sci. 216, 620 (2003).CrossRefGoogle Scholar
Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., and Van de Walle, C.G.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86(1), 253305 (2013).CrossRefGoogle Scholar
Murphy, S.T., Cooper, M.W.D., and Grimes, R.W.: Point defects and non-stoichiometry in thoria. Solid State Ionics 267, 80 (2014).CrossRefGoogle Scholar
Kohan, A.F., Ceder, G., Morgan, D., and Walle, C.G.V.D.: First-principles study of native point defects in ZnO. Phys. Rev. B 61, 15019 (2000).CrossRefGoogle Scholar
Berger, D., Oberhofer, H., and Reuter, K.: First-principles embedded-cluster calculations of the neutral and charged oxygen vacancy at the rutile TiO2(110) surface. Phys. Rev. B 92, 075308 (2015).CrossRefGoogle Scholar
Chen, X-Q., Wolf, W., Podloucky, R., Rogl, P., and Marsman, M.: Ab initio study of ground-state properties of the Laves-phase compound ZrMn2 . Phys. Rev. B 72, 054440 (2005).CrossRefGoogle Scholar
Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., and Van de Walle, C.G.: First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253 (2014).CrossRefGoogle Scholar
Alayeabbas, S.M., Nazir, S., Noor, N.A., Amin, N., and Shaukat, A.: Thermodynamic stability and vacancy defect formation energies in SrHfO3 . J. Phys. Chem. C 118, 19625 (2014).CrossRefGoogle Scholar
Shao, L., Shi, T.T., Zheng, J., Pan, X.Z., and Tang, B.Y.: The native point defects in C14 Mg2Ca laves phase: A first-principles study. Intermetallics 65, 29 (2015).CrossRefGoogle Scholar
Li, H., Zhang, L., Zeng, Q., Wang, J., Cheng, L., Ren, H., and Guan, K.: Crystal structure and elastic properties of ZrB compared with ZrB2: A first-principles study. Comput. Mater. Sci. 49, 814 (2010).CrossRefGoogle Scholar
Lue, C.S., Su, T.H., Xie, B.X., and Cheng, C.: Comparative NMR study of hybridization effect and structural stability in D022-type NbAl3 and NbGa3 . Phys. Rev. B 74, 094101 (2006).CrossRefGoogle Scholar