Skip to main content Accessibility help
×
Home

Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers

Published online by Cambridge University Press:  12 March 2019

Mingjing Zhang
Affiliation:
Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China; and School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China
Xiaofang Zhang
Affiliation:
Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China; and School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China
Pengzhi Guo
Affiliation:
National Green Coating Technology and Equipment Research Center, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China
Jie Lv
Affiliation:
Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China; and School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China
Xunchang Wang
Affiliation:
CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Junfeng Tong
Affiliation:
Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China; and School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China
Yangjun Xia
Affiliation:
Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China; and School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China
Corresponding
Get access

Abstract

Two wide band gap conjugated polymers, namely PBDT-TT25 and PBDT-TT36, derived from (4,8-bis(4,5-dioctyl-thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(trimethylstannane) with 2,5-dibromothieno[3,2-b]thiophene (TT25) or 3,6-dibromothieno[3,2-b]thiophene (TT36), have been synthesized by simply altering the linker positions of thieno[3,2-b]thiophene unit. The impact of linker positions on the energy levels, aggregation, active layer morphology, and optical and photovoltaic properties was evaluated systemically. We found that the absorption was greatly broadened, and the highest occupied molecular orbital (HOMO) energy level was elevated as the result of the significantly reduced twist angle on the polymer backbone when the linker positions changed from 3,6-isomer to 2,5-isomer. Therefore, the optimal inverted polymer solar cells exhibited a 1.87 times enhancement in power conversion efficiencies (PCE), which was mainly ascribed to the higher short circuit current densities (JSC) and fill factor (FF) of the devices mainly benefited from the widened, stronger absorption, higher hole mobility, and more ordered structure.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M., and Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222 (2007).CrossRefGoogle ScholarPubMed
Bartelt, J.A., Beiley, Z.M., Hoke, E.T., Mateker, W.R., Douglas, J.D., Collins, B.A., Tumbleston, J.R., Graham, K.R., Amassian, A., Ade, H., Fréchet, J.M.J., Toney, M.F., and McGehee, M.D.: The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3, 364 (2013).CrossRefGoogle Scholar
Huo, L., Hou, J., Zhang, S., Chen, H-Y., and Yang, Y.: A polybenzo[1,2-b:4,5-b′] dithiophene derivative with deep homo level and its application in high-performance polymer solar cells. Angew. Chem., Int. Ed. 122, 1542 (2010).CrossRefGoogle Scholar
Zhou, H., Yang, L., Price, S.C., Knight, K.J., and You, W.: Enhanced photovoltaic performance of low-bandgap polymers with deep lumo levels. Angew. Chem., Int. Ed. 122, 8164 (2010).CrossRefGoogle Scholar
Li, J., Liang, Z., Wang, Y., Li, H., Tong, J., Bao, X., and Xia, Y.: Enhanced efficiency of polymer solar cells through synergistic optimization of mobility and tuning donor alloys by adding high-mobility conjugated polymers. J. Mater. Chem. C 6, 11015 (2018).CrossRefGoogle Scholar
Chen, W., Huang, G., Li, X., Wang, H., Li, Y., Jiang, H., Zheng, N., and Yang, R.: Side-chain-promoted benzodithiophene-based conjugated polymers toward striking enhancement of photovoltaic properties for polymer solar cells. ACS Appl. Mater. Interfaces 10, 42747 (2018).CrossRefGoogle ScholarPubMed
Chen, W., Jiang, H., Huang, G., Zhang, J., Cai, M., Wan, X., and Yang, R.: High-Efficiency ternary polymer solar cells based on intense FRET energy transfer process. Sol. RRL 2, 1800101 (2018).CrossRefGoogle Scholar
Li, J., Wang, Y., Liang, Z., Wang, N., Tong, J., Yang, C., Bao, X., and Xia, Y.: Enhanced organic photovoltaic performance through modulating vertical composition distribution and promoting crystallinity of the photoactive layer by diphenyl sulfide additive. ACS Appl. Mater. Interfaces 11, 7022 (2019).CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J.C., Wudi, F., and Heeger, A.J.: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789 (1995).CrossRefGoogle Scholar
Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H., and Yan, H.: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).CrossRefGoogle ScholarPubMed
Zhang, S., Ye, L., Zhao, W., Yang, B., Wang, Q., and Hou, J.: Realizing over 10% efficiency in polymer solar cell by device optimization. Sci. China: Chem. 58, 248 (2015).CrossRefGoogle Scholar
He, Z., Xiao, B., Liu, F., Wu, H., Yang, Y., Xiao, S., Wang, C., Russell, T.P., and Cao, Y.: Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 9, 173 (2015).CrossRefGoogle Scholar
Tumbleston, J.R., Collins, B.A., Yang, L., Stuart, A.C., Gann, E., Ma, W., You, W., and Ade, H.: The influence of molecular orientation on organic bulk heterojunction solar cells. Nat. Photonics 8, 385 (2014).CrossRefGoogle Scholar
Zhang, G., Zhang, K., Yin, Q., Jiang, X., Wang, Z., Xin, J., Ma, W., Yan, H., Huang, F., and Cao, Y.: High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J. Am. Chem. Soc. 139, 2387 (2017).CrossRefGoogle ScholarPubMed
Li, M., Gao, K., Wan, X., Zhang, Q., Kan, B., Xia, R., Liu, F., Yang, X., Feng, H., Ni, W., Wang, Y., Peng, J., Zhang, H., Liang, Z., Yip, H., Peng, X., Cao, Y., and Chen, Y.: Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 11, 85 (2016).CrossRefGoogle Scholar
Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W., and Yan, H.: Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).CrossRefGoogle Scholar
An, Y., Liao, X., Chen, L., Yin, J., Ai, Q., Xie, Q., Huang, B., Jen, A.K.Y., and Chen, Y.: Nonhalogen solvent-processed asymmetric wide-bandgap polymers for nonfullerene organic solar cells with over 10% efficiency. Adv. Funct. Mater. 28, 1706517 (2018).CrossRefGoogle Scholar
Lan, L., Chen, Z., Hu, Q., Ying, L., Zhu, R., Liu, F., Russell, T.P., Huang, F., and Cao, Y.: High-performance polymer solar cells based on a wide-bandgap polymer containing pyrrolo[3,4-f]benzotriazole-5,7-dione with a power conversion efficiency of 8.63%. Adv. Sci. 3, 1600032 (2016).CrossRefGoogle ScholarPubMed
Feng, K., Yang, G., Xu, X., Zhang, G., Yan, H., Awartani, O., Ye, L., Ade, H., Li, Y., and Peng, Q.: Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-thiadiazole-based wide-bandgap copolymers. Adv. Energy Mater. 8, 1602773 (2018).CrossRefGoogle Scholar
Cai, Y., Huo, L., and Sun, Y.: Recent advances in wide-bandgap photovoltaic polymers. Adv. Mater. 29, 1605437 (2017).CrossRefGoogle ScholarPubMed
Pan, H., Wu, Y., Li, Y., Liu, P., Ong, B.S., Zhu, S., and Xu, G.: Benzodithiophene copolymer-a low-temperature, solution-processed high-performance semiconductor for thin-film transistors. Adv. Funct. Mater. 17, 3574 (2007).CrossRefGoogle Scholar
Wang, C., Dong, H., Hu, W., Liu, Y., and Zhu, D.: Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 112, 2208 (2012).CrossRefGoogle ScholarPubMed
Yao, H., Ye, L., Zhang, H., Li, S., Zhang, S., and Hou, J.: Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116, 7397 (2016).CrossRefGoogle ScholarPubMed
McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., Macdonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., Mcgehee, M.D., and Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328 (2006).CrossRefGoogle ScholarPubMed
Zhang, S., Yang, B., Liu, D., Zhang, H., Zhao, W., Wang, Q., He, C., and Hou, J.: Correlations among chemical structure, backbone conformation, and morphology in two highly efficient photovoltaic polymer materials. Macromolecules 49, 120 (2016).CrossRefGoogle Scholar
Jin, Y., Chen, Z., Dong, S., Zheng, N., Ying, L., Jiang, X., Liu, F., Huang, F., and Cao, Y.: A novel naphtho[1,2-c:5,6-c′]bis([1,2,5]thiadiazole)-based narrow bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater. 28, 9811 (2016).CrossRefGoogle Scholar
Tong, J., Li, J., Zhang, P., Ma, X., Wang, M., An, L., Sun, J., Guo, P., Yang, C., and Xia, Y.: Naphtho[1,2-c:5,6-c′]bis[1,2,5]-thiadiazole-based conjugated polymers consisting of oligothiophenes for efficient polymer solar cells. Polymer 121, 183 (2017).CrossRefGoogle Scholar
Zhou, H., Yang, L., and You, W.: Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45, 607 (2012).CrossRefGoogle Scholar
Xie, H., Zhang, K., Duan, C., Liu, S., Huang, F., and Cao, Y.: New acceptor-pended conjugated polymers based on 3,6- and 2,7-carbazole for polymer solar cells. Polymer 53, 5675 (2012).CrossRefGoogle Scholar
Yao, H., Ye, L., Huo, L., and Hou, J.: Influence of the alkyl substitution position on photovoltaic properties of 2D-BDT-based conjugated polymers. Sci. China Mater. 58, 213 (2015).CrossRefGoogle Scholar
Wang, W., Zhao, B., Cong, Z., Xie, Y., Gao, C., Wu, H., and Cao, Y.: Nonfullerene polymer solar cells based on a main-chain twisted low-bandgap acceptor with power conversion efficiency of 13.2%. ACS Energy Lett. 3, 1499 (2018).CrossRefGoogle Scholar
Le, T.H., Dao, Q.D., Nghiêm, M.P., Péralta, S., Guillot, R., Pham, Q.N., Fujii, A., Ozaki, M., Goubard, F., and Bui, T-T.: Triphenylamine–thienothiophene organic charge-transport molecular materials: Effect of substitution pattern on their thermal, photoelectrochemical, and photovoltaic properties. Chem.–Asian J. 13, 1302 (2018).CrossRefGoogle ScholarPubMed
Liu, X., Kong, F., Ghadari, R., Jin, S., Chen, W., Yu, T., Hayat, T., Alsaedi, A., Guo, F., Tan, Z., Chen, J., and Dai, S.: Thiophene-arylamine hole-transporting materials in perovskite solar cells: Substitution position effect. Energy Technol. 5, 1788 (2017).CrossRefGoogle Scholar
Singh, R., Pagona, G., Gregoriou, V.G., Tagmatarchis, N., Toliopoulos, D., Han, Y., Fei, Z., Katsouras, A., Avgeropoulos, A., Anthopoulos, T.D., Heeney, M., Keivanidis, P.E., and Chochos, C.L.: The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor-acceptor copolymers. Polym. Chem. 6, 3098 (2015).CrossRefGoogle Scholar
Lim, E., Jung, B.J., and Shim, H.K.: Synthesis and characterization of a new light-emitting fluorene-thieno[3,2-b]thiophene-based conjugated copolymer. Macromolecules 36, 4288 (2003).CrossRefGoogle Scholar
Gao, P., Tong, J., Guo, P., Li, J., Wang, N., Li, C., Ma, X., Zhang, P., Wang, C., and Xia, Y.: Medium band gap conjugated polymers from thienoacene derivatives and pentacyclic aromatic lactam as promising alternatives of poly(3-hexylthiophene) in photovoltaic application. J. Polym. Sci., Part A: Polym. Chem. 56, 85 (2018).CrossRefGoogle Scholar
Zhu, D., Bao, X., Zhu, Q., Gu, C., Qiu, M., Wen, S., Wang, J., Shahida, B., and Yang, R.: Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a π bridge. Energy Environ. Sci. 10, 614 (2017).CrossRefGoogle Scholar
An, M., Xie, F., Geng, X., Zhang, J., Jiang, J., Lei, Z., He, D., Xiao, Z., and Ding, L.: A high-performance D–A copolymer based on dithieno[3,2-b:2′,3′-d] pyridin-5(4h) -one unit compatible with fullerene and nonfullerene acceptors in solar cells. Adv. Energy Mater. 7, 1602509 (2017).CrossRefGoogle Scholar
Blouin, N., Michaud, A., and Leclerc, M.: A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 19, 2295 (2007).CrossRefGoogle Scholar
Zhang, H., Ying, S., Tieke, B., Zhang, J., and Yang, W.: 1,6-Naphthodipyrrolidone -based donor–acceptor polymers with low bandgap. Polymer 60, 215 (2015).CrossRefGoogle Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: Gaussian 09, Revision A.01 (Gaussian, Inc., Wallingford, Connecticut, 2009).Google Scholar
Wu, Y., Li, Z., Ma, W., Huang, Y., and Hou, J.: PDT-S-T: A new polymer with optimized molecular conformation for controlled aggregation and π–π stacking and its application in efficient photovoltaic devices. Adv. Mater. 25, 3449 (2013).CrossRefGoogle ScholarPubMed
Yu, J., An, Q., Hai, J., Nie, X., and Tang, W.: Thiadiazole quinoxaline-based copolymers with ∼1.0 eV bandgap for ternary polymer solar cells. Polymer 79, 12 (2015).CrossRefGoogle Scholar
Liu, D., Wang, J., Gu, C., Li, Y., Bao, X., and Yang, R.: Stirring up acceptor phase and controlling morphology via choosing appropriate rigid aryl rings as lever arms in symmetry-breaking benzodithiophene for high-performance fullerene and fullerene-free polymer solar cells. Adv. Mater. 30, 1705870 (2018).CrossRefGoogle ScholarPubMed
Li, Y., Cao, Y., Gao, J., Wang, D., Yu, G., and Heeger, A.J.: Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth. Met. 99, 243 (1999).CrossRefGoogle Scholar
Sun, Q., Wang, H., Yang, C., and Li, Y.: Synthesis and electroluminescence of novel copolymers containing crown ether spacers. J. Mater. Chem. 13, 800 (2003).CrossRefGoogle Scholar
Pommerehne, J., Vestweber, H., Guss, W., Mahrt, R.F., Bässler, H., Porsch, M., and Daub, J.: Efficient two layer leads on a polymer blend basis. Adv. Mater. 7, 551 (1995).CrossRefGoogle Scholar
Li, Y.: Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45, 723 (2012).CrossRefGoogle ScholarPubMed
Malliaras, G.G., Brock, P.J., Scott, C., and Salem, J.R.: Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys. Rev. B 58, R13411 (1998).CrossRefGoogle Scholar
Hu, Y., Li, Z., Jiang, L., Chen, Z., Liao, L., and Wang, E.: Correlation of molecular structure and charge transport properties: A case study in naphthalenediimide-based copolymer semiconductors. Adv. Electron. Mater. 4, 1800203 (2018).CrossRefGoogle Scholar
Kyaw, A.K., Wang, D.H., Luo, C., Cao, Y., Nguyen, T.Q., Bazan, G.C., and Heeger, A.J.: Effects of solvent additives on morphology, charge generation, transport, and recombination in solution-processed small-molecule solar cells. Adv. Energy Mater. 4, 1301469 (2014).CrossRefGoogle Scholar
Chu, T-Y., Lee, Y-H., and Song, O.K.: Effects of interfacial stability between electron transporting layer and cathode on the degradation process of organic light-emitting diodes. Appl. Phys. Lett. 91, 223509 (2007).CrossRefGoogle Scholar
Xia, Y., Zhang, H., Li, J., Tong, J., Zhang, P., and Yang, C.: Synthesis of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-isoindigo conjugated polymer and enhancement of photovoltaic property with diphenyl sulfide additives. J. Polym. Res. 22, 633 (2015).CrossRefGoogle Scholar
Li, H., He, D., Mao, P., Wei, Y., Ding, L., and Wang, J.: Additive-free organic solar cells with power conversion efficiency over 10%. Adv. Energy Mater. 7, 1602663 (2017).CrossRefGoogle Scholar
Tong, J., An, L., Li, J., Lv, J., Guo, P., Li, L., Zhang, P., Yang, C., Xia, Y., and Wang, C.: Effects of alkyl side chain length of low bandgap naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole based copolymers on the optoelectronic properties of polymer solar cells. J. Polym. Sci., Part A: Polym. Chem. 56, 2059 (2018).CrossRefGoogle Scholar

Zhang et al. supplementary material

Zhang et al. supplementary material 1

File 4 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 112
Total number of PDF views: 56 *
View data table for this chart

* Views captured on Cambridge Core between 12th March 2019 - 20th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-kdwz2 Total loading time: 0.383 Render date: 2021-01-20T17:53:14.078Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *