Skip to main content Accessibility help
×
Home

Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates

Published online by Cambridge University Press:  03 March 2011

Alexej Michailovski
Affiliation:
Laboratory of Inorganic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
Michael Wörle
Affiliation:
Laboratory of Inorganic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
Denis Sheptyakov
Affiliation:
Laboratory for Neutron Scattering, ETH Zurich & PSI Villigen, CH-5232 Villigen PSI, Switzerland
Greta R. Patzke
Affiliation:
Laboratory of Inorganic Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
Corresponding
E-mail address:
Get access

Abstract

In the course of a systematic field study, anisotropic alkali and alkaline earth vanadates have been accessed through a straightforward, one-step hydrothermal process. They are formed quantitatively from V2O5 and alkali- or alkaline earth halide solutions after a few days of autoclave treatment in the temperature range between 100 and 220 °C. The presence of ionic additives leads to an interplay between the formation of isotropic crystalline phases and the production of fibrous oxide materials, such as a novel magnesium vanadate. The influence of the hydrothermal parameters and of the alkali/alkaline earth halides on the emerging phases and morphologies has been investigated in the course of a systematic study. The results are compared with other vanadate- and transition metal oxide-based hydrothermal systems, and the emerging trends are discussed with respect to the development of predictive synthetic concepts for nanostructured vanadium oxides.

Type
Outstanding Meeting Papers
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

1The Chemistry of Nanostructured Materials edited by Yang, P. (World Scientific Publishers, Singapore, 2003).CrossRefGoogle ScholarPubMed
2Patzke, G.R., Krumeich, F., and Nesper, R.: Oxidic nanotubes and nanorods—anisotropic materials for a future nanotechnology. Angew. Chem. Int. Ed. Engl. 41, 2446 (2002).3.0.CO;2-K>CrossRefGoogle ScholarPubMed
3Michailovski, A., Grunwaldt, J-D., Baiker, A., Kiebach, R., Bensch, W., and Patzke, G.R.: Studying the solvothermal formation of MoO3 fibers by complementary in situ EXAFS/EDXRD techniques. Angew. Chem. Int. Ed. Engl. 44, 5643 (2005).CrossRefGoogle ScholarPubMed
4Niederberger, M., Krumeich, F., Muhr, H-J., Müller, M., and Nesper, R.: Synthesis and characterization of novel nanoscopic molybdenum oxide fibers. J. Mater. Chem. 11, 1941 (2001).CrossRefGoogle Scholar
5Chirayil, T., Zavalij, P.Y., and Whittingham, M.S.: Hydrothermal synthesis of vanadium oxides. Chem. Mater. 10, 2629 (1998).CrossRefGoogle Scholar
6Livage, J.: Vanadium pentoxide gels. Chem. Mater. 3, 578 (1991).CrossRefGoogle Scholar
7Wang, Y. and Cao, G.: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787 (2006).CrossRefGoogle Scholar
8Whittingham, M.S., Song, Y., Lutta, S., Zavalij, P.Y., and Chernova, N.A.: Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 15, 3362 (2005).CrossRefGoogle Scholar
9Zavalij, P.Y. and Whittingham, M.S.: Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. B55, 627 (1999).CrossRefGoogle Scholar
10Hagrman, P.J., Finn, R.C., and Zubieta, J.: Molecular manipulation of solid state structure: Influences of organic components on vanadium oxide architectures. Solid State Sci. 3, 745 (2001).CrossRefGoogle Scholar
11Catlow, C.R.A., Gay, D.H., Rohl, A.L., and Sayle, D.C.: Simulating the structures of crystals and their surfaces. Top. Catal. 3, 135 (1996).CrossRefGoogle Scholar
12Rao, C.N.R. and Raveau, B.: Transition Metal Oxides (VCH Publishers, New York, 1995).Google Scholar
13Boulet, P., Baiker, A., Chermette, H., Gilardoni, F., Volta, J.C., and Weber, J.: Oxidation of methanol to formaldehyde catalyzed by V2O5. A density functional study. J. Phys. Chem. B 37, 9659 (2002).CrossRefGoogle Scholar
14Spengler, J., Anderle, F., Bosch, E., Grasselli, R.K., Pillep, B., Behrens, P., Lapina, O.B., Shubin, A.A., Eberle, H.J., and Knozinger, H.: Antimony oxide-modified vanadia-based catalysts—Physical characterization and catalytic properties. J. Phys. Chem. B 105, 10772 (2001).CrossRefGoogle Scholar
15Spahr, M.E., Stoschitzki-Bitterli, P., Nesper, R., Haas, O., and Novak, P.: Vanadium oxide nanotubes—A new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 146, 2780 (1999).CrossRefGoogle Scholar
16Stark, W.J., Wegner, K., Pratsinis, S.E., and Baiker, A.: Flame aerosol synthesis of vanadia-titania nanoparticles: Structural and catalytic properties in the selective catalytic reduction of NO by NH3. J. Catal. 197, 182 (2001).CrossRefGoogle Scholar
17Feldmann, C.: Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 13, 101 (2003).CrossRefGoogle Scholar
18Krumeich, F., Muhr, H-J., Niederberger, M., Bieri, F., Schnyder, B., and Nesper, R.: Morphology and topochemical reactions of novel vanadium oxide nanotubes. J. Am. Chem. Soc. 121, 8324 (1999).CrossRefGoogle Scholar
19Liu, X., Taschner, C., Leonhardt, A., Rummeli, M.H., Pichler, T., Gemming, T., Buchner, B., and Knupfer, M.: Structural, optical, and electronic properties of vanadium oxide nanotubes. Phys. Rev. B 72, 115407 (2005).CrossRefGoogle Scholar
20Gui, Z., Fan, R., Mo, W., Chen, X., Yang, L., Zhang, S., Hu, Y., Wang, Z., and Fan, W.: Precursor morphology controlled formation of rutile VO2 nanorods and their self-assembled structure. Chem. Mater. 14, 5053 (2002).CrossRefGoogle Scholar
21Watanabe, T., Cho, W-S., Suchanek, W.L., Endo, M., Ikuma, Y., and Yoshimura, M.: Direct fabrication of crystalline vanadates films by hydrothermal-electrochemical method. Solid State Sci. 3, 183 (2001).CrossRefGoogle Scholar
22Chirayil, T.A., Zavalij, P.Y., and Whittingham, M.S.: A new vanadium dioxide cathode. J. Electrochem. Soc. 143, L193 (1996).CrossRefGoogle Scholar
23Chirayil, T., Zavalij, P.Y., and Whittingham, M.S.: Hydrothermal synthesis and characterization of “LixV2-δO4-δH2O”. Solid State Ionics 84, 163 (1996).CrossRefGoogle Scholar
24Xu, H.Y., Wang, H., Song, Z.Q., Wang, Y.W., Yan, H., and Yoshimura, M.: Novel chemical method for synthesis of LiV3O8 nanorods as cathode material for lithium ion batteries. Electrochim. Acta 49, 349 (2004).CrossRefGoogle Scholar
25Ozawa, K., Wang, L., Fujii, H., Eguchi, M., Hase, M., and Yamaguchi, H.: Preparation and electrochemical properties of the layered material of LixVyO2 (x = 0.86 and y = 0.8). J. Electrochem. Soc. 153 (1), A 117 (2006).CrossRefGoogle Scholar
26Oka, T., Oka, Y., and Yamamoto, N.: Layered structures of hydrated vanadium oxides—Part 1. J. Mater. Chem. 2(3), 331 (1992).Google Scholar
27Wu, X., Tao, Y., Dong, L., and Hong, J.: Synthesis and characterization of self-assembling (NH4)0.5V2O5. J. Mater. Chem. 14, 901 (2004).CrossRefGoogle Scholar
28Oka, Y., Yao, T., and Yamamoto, N.: Hydrothermal synthesis and structure refinements of alkali-metal trivanadates AV3O8 (A = K, Rb, Cs). Mater. Res. Bull. 32, 1201 (1997).CrossRefGoogle Scholar
29Oka, Y., Yao, T., Yamamoto, N., and Tamada, O.: Hydrothermal synthesis of vanadium oxide bronzes MxV3O8(VO)y⋅nH2O (M = K, Rb, Ba). Mater. Res. Bull. 32, 59 (1997).CrossRefGoogle Scholar
30Oka, Y., Yao, T., and Yamamoto, N.: Layered structures of hydrated vanadium oxides—Part 4. J. Mater. Chem. 5(9), 1423 (1995).CrossRefGoogle Scholar
31Xu, H., He, W., Wang, H., and Yan, H.: Solvothermal synthesis of K2V3O8 nanorods. J. Cryst. Growth 260, 447 (2004).CrossRefGoogle Scholar
32Shi, F-N., Rocha, J., Lopes, A.B., and Trinidade, T.: Morphological micro-patterning of tubular-windows on crystalline K2V3O8 sheets. J. Cryst. Growth 273, 572 (2005).CrossRefGoogle Scholar
33Yao, T., Oka, Y., and Yamamoto, N.: Layered structures of hydrated vanadium oxides—Part 5. J. Mater. Chem. 6(7), 1195 (1996).CrossRefGoogle Scholar
34Oka, Y., Saito, F., Yao, T., and Yamamoto, N.: Crystal structure of Cs2V4O11 with unusual V-O coordinations. J. Solid State Chem. 134, 52 (1997).CrossRefGoogle Scholar
35Ushio, M.: Hydrothermal synthesis of fibrous calcium vanadate crystal in the system CaO-V2O5-H2O. Nippon Kagaku Kaishi 2, 185 (1979).CrossRefGoogle Scholar
36Oka, Y., Yao, T., and Yamamoto, N.: Crystal structures of hydrated vanadium oxides with δ-type V2O5 layers: δ-M0.25V2O5⋅H2O; M = Ca, Ni. J. Solid State Chem. 132, 323 (1997).CrossRefGoogle Scholar
37Oka, Y., Yao, T., Yamamoto, N., Ueda, M., and Maegawa, S.: Synthesis and crystal structure of SrV4O9 in a metastable state. J. Solid State Chem. 149, 414 (2000).CrossRefGoogle Scholar
38Yao, T., Oka, Y., and Yamamoto, N.: Structure refinement of barium metavanadate BaV2O6. Inorg. Chim. Acta 238, 165 (1995).CrossRefGoogle Scholar
39Oka, Y., Yao, T., and Yamamoto, N.: Hydrothermal synthesis and crystal structure of BaV3O8. J. Solid State Chem. 137, 407 (1995).CrossRefGoogle Scholar
40Oka, Y., Tamada, O., Yao, T., and Yamamoto, N.: Hydrothermal synthesis and crystal structure of a novel barium vanadium oxide: Ba0.4V3O8(VO)0.4⋅nH2O. J. Solid State Chem. 114, 359 (1995).CrossRefGoogle Scholar
41Oka, Y., Yao, T., Sato, S., and Yamamoto, N.: Hydrothermal synthesis and crystal structure of barium hewettite: BaV6O16⋅nH2O. J. Solid State Chem. 140, 219 (1998).CrossRefGoogle Scholar
42Wang, X., Liu, L., Bontchev, R., and Jacobson, A.J.: Electrochemicalhydrothermal synthesis and structure determination of a novel layered mixed-valence oxide: BaV7O16⋅nH2O. Chem. Commun. 1009 (1998).CrossRefGoogle Scholar
43Oka, Y., Yao, T., and Yamamoto, N.: Hydrothermal synthesis and crystal structure of a new barium vanadium bronze Ba1+xV8O21 with a tunnel structure. J. Solid State Chem. 150, 330 (2000).CrossRefGoogle Scholar
44Kanke, Y., Oka, Y., and Yao, T.: Hydrothermal synthesis and crystal structure of Ba6[V10O30(H2O)]⋅2.5H2O with an unusual arrangement of VIV-O polyhedra. J. Solid State Chem. 151, 130 (2000).CrossRefGoogle Scholar
45Zhang, H., Yang, D., Li, D., Ma, X., Li, S., and Que, D.: Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Cryst. Growth Design 5, 547 (2005).CrossRefGoogle Scholar
46Michailovski, A., Krumeich, F., and Patzke, G.R.: Solvothermal morphology studies: Alkali and alkaline earth molybdates. Helv. Chim. Acta 87, 1029 (2004).CrossRefGoogle Scholar
47Michailovski, A. and Patzke, G. R.: (in preparation).Google Scholar
48Behrens, P., Glaue, A., Haggenmuller, C., and Schechner, G.: Structure-directed materials syntheses: Synthesis field diagrams for the preparation of mesostructured silicas. Solid State Ionics 101, 255 (1997).CrossRefGoogle Scholar
49Pausewang, G. and Dehnicke, K.: Alkaline oxofluoro metalates of transition metals II. Structure of some oxide fluorides with pentavalent vanadium. Z. Anorg. Allg. Chem. 369, 265 (1969).CrossRefGoogle Scholar
50Mattes, R. and Foerster, H.: The crystal structure of green Cs2[VOF4(H2O)] and its relationship to blue Cs2[VOF4(H2O)]. J. Solid State Chem. 45, 154 (1982).CrossRefGoogle Scholar
51Evans, H.T., Post, J.E., Ross, D.R., and Nelen, J.A.: The crystal structure and crystal chemistry of fernandinite and corvusite. Can. Mineral. 32, 339 (1994).Google Scholar
52Evans, H.T. and Hughes, J.M.: Crystal chemistry of the natural vanadium bronzes. Am. Mineral. 75, 508 (1990).Google Scholar
53West, A.R. and Glasser, F.P.: Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds. J. Solid State Chem. 4, 20 (1972).CrossRefGoogle Scholar
54Weeks, A.D., Ross, D.R., and Marvin, R.F.: Occurrence and properties of barnesite—Na2V6O16·3H2O. A new hydrated sodium vanadate mineral from Utah. Am. Mineral. 48, 1187 (1963).Google Scholar
55Evans, H.T.: The crystal structure of hewettite. Can. Mineral. 27, 181 (1989).Google Scholar
56Wadsley, A.D.: Crystal chemistry of non-stoichiometric pentavalent vanadium oxides—crystal structure of Li1+xV3O8. Acta Crystallogr. 10, 261 (1957).CrossRefGoogle Scholar
57Joanneau, S., Verbaere, A., Lascaud, S., and Guyomard, D.: Improvement of the lithium insertion properties of Li1.1V3O8. Solid State Ionics 177, 311 (2006).CrossRefGoogle Scholar
58Bachmann, H.G. and Barnes, W.H.: The crystal structure of a sodium-calcium variety of metahewettite. Can. Mineral. 7, 219 (1962).Google Scholar
59Zhou, G-T., Wang, X., and Yu, J.C.: Selected-control synthesis of NaV6O15 and Na2V6O16·3H2O single-crystalline nanowires. Cryst. Growth Design 5, 969 (2005).CrossRefGoogle Scholar
60Pistorius, C.W.: Polymorphism and stability of some sodium cryolites to high pressures. J. Solid State Chem. 13, 208 (1975).CrossRefGoogle Scholar
61Hughes, J.M. and Finger, L.W.: Bannermanite, a new sodium-potassium vanadate isostructural with β-NaxV6O15. Am. Mineral. 68, 634 (1983).Google Scholar
62Wadsley, A.D.: The crystal structure of Na2-xV6O15. Acta Crystallogr. 8, 695 (1955).CrossRefGoogle Scholar
63Livage, J.: Synthesis of polyoxovanadates via “chimie douce”. Coord. Chem. Rev. 178, 999 (1998).CrossRefGoogle Scholar
64Kato, K., Kanke, Y., Oka, Y., and Yao, T.: Crystal structure of zinc hydroxide sulfate vanadate(V), Zn7(OH)3(SO4)(VO4)3. Z. Krist. 213, 26 (1998).Google Scholar
65Rodríguez-Carvajal, J.: Recent advantages in magnetic structure determination by neutron powder diffraction. Physica B (Amsterdam) 192, 55 (1993).CrossRefGoogle Scholar
66Isaguliants, G. and Belomestnykh, I.P.: Selective oxidation of methanol to formaldehyde over V-Mg-O catalysts. Catal. Today 100, 441 (2005).CrossRefGoogle Scholar
67Schnuriger, B., Enjalbert, R., Savariault, J.M., and Galy, J.: Synthesis and crystal structure of β-SrV2O6. J. Solid State Chem. 95, 397 (1991).CrossRefGoogle Scholar
68Jordan, B.D. and Calvo, C.: Crystal structure of lead metavanadate, PbV2O6. Can. J. Chem. 52, 2701 (1974).CrossRefGoogle Scholar
69Ulická, L., Pavelčik, F., and Huml, K.: Structure of barium meta-vanadate monohydrate. Acta Crystallogr. C 43, 2266 (1987).CrossRefGoogle Scholar
70Zurková, L., Čorba, J., and Suchá, V.: Preparation of crystalline Ba(VO3)2·H2O and some of its physico-chemical properties. Chem. Zvesti. 22, 73 (1968).Google Scholar
71Jolivet, J-P., Henry, M., and Livage, J.: Metal Oxide Chemistry and Synthesis: From Solution to Solid State (John Wiley & Sons, Chichester, UK, 2000).Google Scholar
72Michailovski, A., Willems, J.B., Stock, N., and Patzke, G.R.: Solvothermal synthesis and crystal structures of alkali molybdates. Helv. Chim. Acta 88, 2479 (2005).CrossRefGoogle Scholar
73Michailovski, A., Krumeich, F., and Patzke, G.R.: Solvothermal synthesis of hierarchically structured pyrochlore ammonium tungstate nanospheres. Mater. Res. Bull. 39, 887 (2004).CrossRefGoogle Scholar
74Michailovski, A., Kiebach, R., Bensch, W., Grunwaldt, J-D., Baiker, A., Komarneni, S., and Patzke, G.R.: Morphological and kinetic studies on hexagonal tungstates. Chem. Mater. (submitted).Google Scholar
75Michailovski, A., Krumeich, F., and Patzke, G.R.: Hierarchical growth of mixed ammonium molybdenum/tungsten bronze nanorods. Chem. Mater. 16, 1433 (2004).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 138 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-5qzh9 Total loading time: 0.603 Render date: 2021-01-27T01:04:42.254Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *