Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-27v8q Total loading time: 0.293 Render date: 2022-11-27T17:14:08.816Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium–indium–oxide thin films

Published online by Cambridge University Press:  31 January 2011

Anchuan Wang
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Nikki L. Edleman
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Jason R. Babcock
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Tobin J. Marks*
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Melissa A. Lane
Affiliation:
Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Paul R. Brazis
Affiliation:
Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
Carl R. Kannewurf
Affiliation:
Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208
*
a)Address all correspondence to this author.t-marks@northwestern.edu
Get access

Abstract

Gallium–indium–oxide films (GaxIn2⊟xO3), where x = 0.0–1.1, were grown by low-pressure metalorganic chemical vapor deposition using the volatile metalorganic precursors In(dpm)3 and Ga(dpm)3 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionato). The films were smooth (root mean square roughness = 50–65 Å) with a homogeneously Ga-substituted, cubic In2O3 microstructure, randomly oriented on quartz or heteroepitaxial on (100) yttria-stabilized zirconia single-crystal substrates. The highest conductivity of the as-grown films was found at x = 0.12, with σ = 700 S/cm [n-type; carrier density = 8.1 × 1019 cm⊟3; mobility = 55.2 cm2/(V s); dσ/dT<0]. The optical transmission window of such films is considerably broader than that of Sn-doped In2O3, and the absolute transparency rival or exceeds that of the most transparent conductive oxides known. Reductive annealing, carried out at 400–425 C° in a flowing gas mixture of H2 (4%) and N2, resulted in increased conductivity (σ 1400 S/cm; n-type), carrier density (1.4 × 1020 cm⊟3), and mobility as high as 64.6 cm2/(V s), with little loss in optical transparency. No significant difference in carrier mobility or conductivity is observed between randomly oriented and heteroepitaxial films, arguing in combination with other data that carrier scattering effects at high-angle grain/domain boundaries play a minor role in the conductivity mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ginley, D.S. and Bright, C., Eds., MRS Bull. 25, 15 (2000) and articles therein.CrossRefGoogle Scholar
2.Granqvist, C.G., Appl. Phys. A 52, 83 (1991).CrossRefGoogle Scholar
3.Jarzebski, Z.M., Phys. Status Solidi A 71, 13 (1982).CrossRefGoogle Scholar
4.Wang, R., Sleight, A.W., Platzer, R., and Gardner, J.A., J. Solid State Chem. 122, 166 (1996).CrossRefGoogle Scholar
5.Wang, R., King, L.H., and Sleight, A.W., J. Mater. Res. 11, 1659(1996).CrossRefGoogle Scholar
6.Minami, T., Kakumu, T., and Takata, S., J. Vac. Sci. Technol., A 14, 1704 (1996).CrossRefGoogle Scholar
7.Minami, T., Kakumu, T., Shimokawa, K., and Takata, S., Thin Solid Films 317, 318 (1998).CrossRefGoogle Scholar
8.Omata, T., Ueda, N., Hikuma, N., Ueda, K., Mizoguchi, H., Hashimoto, T., and Kawazoe, H., Appl. Phys. Lett. 62, 499 (1993).CrossRefGoogle Scholar
9.Palmer, G.B., Poeppelmeier, K.R., and Mason, T.O., Chem. Mater. 9, 3121 (1997).CrossRefGoogle Scholar
10.Edwards, D.D., Mason, T.O., Sinkler, W., Marks, L.D., Poeppelmeier, K.R., Hu, Z., and Jorgensen, J.D., J. Solid State Chem. 150, 294 (2000).CrossRefGoogle Scholar
11.Edwards, D.D. and Mason, T.O., J. Am. Ceram. Soc. 81, 3285 (1998).CrossRefGoogle Scholar
12.Edwards, D.D., Mason, T.O., Sinkler, W., Marks, L.D., Goutenoire, F., and Poeppelmeier, K.R., J. Solid State Chem. 140, 242 (1998).CrossRefGoogle Scholar
13.Edwards, D.D., Mason, T.O., Goutenoire, F., and Poeppelmeier, K.R., Appl. Phys. Lett. 70, 1706 (1997).CrossRefGoogle Scholar
14.Edwards, D.D., Folkins, P.E., and Mason, T.O., J. Am. Ceram. Soc. 80, 253 (1997).CrossRefGoogle Scholar
15.Phillips, J.M., Cava, R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajewski, J.J., Marshall, J.H., Peck, W.F. Jr., and Rapkine, D.H., Appl. Phys. Lett. 67, 2246 (1995).CrossRefGoogle Scholar
16.Phillips, J.M., Kwo, J., Thomas, G.A., Carter, S.A., Cava, R.J., Huo, S.Y., Krajewski, J.J. Jr., Marshall, J.H., Peck, W.F., Rapkine, D.H., and Dover, R.B. van, Appl. Phys. Lett. 65, 115 (1994).CrossRefGoogle Scholar
17.Cava, R.J., Phillips, J.M., Kwo, J., Thomas, G.A., Carter, S.A., Krajewski, J.J., Peck, W.F. Jr., Marshall, J.H., and Rapkine, D.H., Appl. Phys. Lett. 64, 2071 (1994).CrossRefGoogle Scholar
18.Minami, T., Takata, S., and Kakumu, T.J., J. Vac. Sci. Technol., A 14, 1689 (1996).CrossRefGoogle Scholar
19.Minami, T., Takeda, Y., Kakumu, T., Takata, S., and Fukuda, I., J. Vac. Sci. Technol., A 15, 958 (1997).CrossRefGoogle Scholar
20.Gordon, R.G., MRS Bull. 25, 52 (2000).CrossRefGoogle Scholar
21.Weiher, R.L., J. Appl. Phys. 33, 2834 (1962).CrossRefGoogle Scholar
22.Groth, R., Phys. Status Solidi 14, 69 (1966).CrossRefGoogle Scholar
23.Kamei, M., Yagami, T., Takaki, S., and Shigesato, Y., Appl. Phys. Lett. 64, 2712 (1994).CrossRefGoogle Scholar
24.Tarsa, E.J., English, J.H., and Speck, J.S., Appl. Phys. Lett. 62, 2332 (1993).CrossRefGoogle Scholar
25.Kamei, M., Shigesato, Y., Yasui, I., Taga, N., and Takaki, S., J. NonCryst. Solids 218, 267 (1997).CrossRefGoogle Scholar
26.Taga, N., Odaka, H., Shigesato, Y., Yasui, I., Kamei, M., and Haynes, T.E., J. Appl. Phys. 80, 978 (1996).CrossRefGoogle Scholar
27.Kwok, H.S., Sun, X.W., and Kim, D.H., Thin Solid Films 335, 299 (1998).CrossRefGoogle Scholar
28.Ohta, H., Orita, M., Hirano, M., Tanji, H., Kawazoe, H., and Hosono, H., Appl. Phys. Lett. 76, 2740 (2000).CrossRefGoogle Scholar
29.Yan, M., Lane, M., Kannewurf, C.R., and Chang, R.P.H., Appl. Phys. Lett. 78, 2342 (2001).CrossRefGoogle Scholar
30.Schulz, D.L. and Marks, T.J., in CVD of Non-Metals, edited by Rees, W.S. Jr., (VCH Publishers, New York, 1996), pp. 39150.Google Scholar
31.Wang, A., Dai, J.Y., Cheng, J.Z., Chudzik, M.P., Marks, T.J., Chang, R.P.H., and Kannewurf, C.R., Appl. Phys. Lett. 73, 327 (1998).CrossRefGoogle Scholar
32.Wang, A., Babcock, J.R., Edleman, N.L., Metz, A.W., Lane, M.A., Asahi, R., Dravid, V.P., Kannewurf, C.R., Freeman, A.J., and Marks, T.J., Proc. Nat. Acad. Sci. U.S.A. 98, 7113 (2001).Google Scholar
33.Reported in part: Wang, A., Edleman, N.L., Babcock, J.R., Marks, T.J., Lane, M.A., Brazis, P.W., and Kannewurf, C.R., in Infrared Applications of Semiconductors III, edited by Stadler, B.J.H., Manasreh, M.O., Ferguson, I., and Zhang, Y-H. (Mater. Res. Soc. Symp. Proc. 607, Warrendale, PA, 2000), p. 345.Google Scholar
34.Wang, A., Cheng, S.C., Belot, J.A., McNeely, R.J., Cheng, J., Marcordes, B., and Marks, T.J., in Chemical Aspects of Electronic Ceramics Processing, edited by Kumta, P.N., Hepp, A.F., Beach, D.B., Arkles, B., and Sullivan, J.J. (Mater. Res. Soc. Symp. Proc. 495, Warrendale, PA, 1998), p. 3.Google Scholar
35.Tahar, R.B.H., Ban, T., Ohya, Y., and Takahashi, Y.J., Appl. Phys. 83, 2631 (1998).CrossRefGoogle Scholar
36.Mason, T.O., Gonzalez, G.B., Kammler, D.R., Mansourian-Hadavi, N., and Ingram, B.J., Thin Solid Films 411, 106 (2002).CrossRefGoogle Scholar
37.Ryabova, L.A., Salun, V.S., and Serbinov, L.A., Thin Solid Films 92, 327 (1982).CrossRefGoogle Scholar
38.Burstein, E., Phys. Rev. 93, 632 (1954).CrossRefGoogle Scholar
39.Chopra, K.L., Major, S., and Pandya, D.K., Thin Solid Films 102, 1 (1983).CrossRefGoogle Scholar
40.Marezio, M., Acta Crystallogr. 20, 723 (1966).CrossRefGoogle Scholar
41.Cui, J., Wang, A., Edleman, N.L., Ni, J., Lee, P., Armstrong, N.R., and Marks, T.J., Adv. Mater. 13, 1476 (2001).3.0.CO;2-Y>CrossRefGoogle Scholar
42.Milliron, D.J., Hill, I.G., Shen, C., Kahn, A., and Schwartz, J., J. Appl. Phys. 87, 572 (2000).CrossRefGoogle Scholar
43.Ishii, H., Sugiyama, K., Ito, E., and Seti, K., Adv. Mater. 11, 605 (1999).3.0.CO;2-Q>CrossRefGoogle Scholar
44.Tahar, R.B.H., Ban, T., Ohya, Y., and Takahashi, Y.J., Appl. Phys. 82, 865 (1997).CrossRefGoogle Scholar
45.Zhang, D.H. and Ma, H.L., Appl. Phys. A 62, 487 (1996).CrossRefGoogle Scholar
46.Shigesato, Y. and Paine, D.C., Appl. Phys. Lett. 62, 1268 (1993).CrossRefGoogle Scholar
47.Wang, A., Edleman, N.L., Babcock, J.R., Marks, T.J., Lane, M.A., Brazis, P.W., and Kannewurf, C.R. (manuscript in preparation).Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium–indium–oxide thin films
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium–indium–oxide thin films
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Growth, microstructure, charge transport, and transparency of random polycrystalline and heteroepitaxial metalorganic chemical vapor deposition-derived gallium–indium–oxide thin films
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *