Skip to main content Accessibility help
×
Home

Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy

Published online by Cambridge University Press:  31 January 2011

Xiaoling Zhang
Affiliation:
Department MTM, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, People's Republic of China
W. Lauwerens
Affiliation:
Institute for Materials Research, Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium, and Center for Scientific and Research in Metal Manufacturing, B-3590 Diepenbeek, Belgium
L. Stals
Affiliation:
Institute for Materials Research, Limburgs Universitair Centrum, B-3590 Diepenbeek, Belgium
Jiawen He
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049 Xi'an, People's Republic of China
J-P. Celis
Affiliation:
Department Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
Get access

Abstract

The fretting wear of sulphur-deficient MoSx coatings with different crystallographic orientations has been investigated in ambient air of controlled relative humidity. The coefficient of friction and the wear rate of MoSx coatings sliding against corundum depend not only on fretting parameters like contact stress, fretting frequency, and relative humidity, but also strongly on the crystallographic orientation of the coatings. For randomly oriented MoSx coatings, the coefficient of friction and the wear rate increased significantly with increasing relative humidity. In contrast, basal-oriented MoSx coatings were less sensitive to relative humidity. The coefficient of friction of both types of MoSx coatings decreased on sliding against corundum with increasing contact stress and decreasing fretting frequency. A correlation between dissipated energy and wear volume is proposed. This approach allows detection in a simple way of differences in fretting wear resistance between random- and basal-oriented MoSx coatings tested in ambient air of different relative humidity.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Hilton, M.R. and Fleischauer, P.D., Surf. Coat. Technol. 54–55, 435 (1982).Google Scholar
2.Pope, L.E. and Panitz, J.K.G., Surf. Coat. Technol. 36, 341 (1988).CrossRefGoogle Scholar
3.Nabot, J.Ph., Aubert, A., Gillet, R., and Renaux, Ph., Surf. Coat. Technol. 43/44, 629 (1990).CrossRefGoogle Scholar
4.Stupp, B.C., Thin Solid Films 84, 257 (1981).CrossRefGoogle Scholar
5.Spalvins, T., Thin solid Films 118, 375 (1984).CrossRefGoogle Scholar
6.Renevier, N.M., Fox, V.C., Teer, D.G., and Hampshire, J., Surf. Coat. Technol. 127, 24 (2000).CrossRefGoogle Scholar
7.Hilton, M.R., Bauser, R., Didziulis, S.V., Dugger, M.T., Keem, J.M., and Scholhamer, J., Surf. Coat. Technol. 53, 13 (1992).CrossRefGoogle Scholar
8.Kobs, K., Dimigen, H., Hubsch, H., Tolle, H.J., Leutenecker, R., and Ryssel, H., Mater. Sci. Eng. 90, 281 (1987).CrossRefGoogle Scholar
9.Jervis, T.R., Hirvonen, J-P., and Nastasi, M., J. Mater. Res. 6, 1350 (1991).CrossRefGoogle Scholar
10.Weise, G., Teresiak, A., Bacher, I., Markschlager, P., and Kampschulte, G., Surf. Coat. Technol. 76–77, 382 (1995).CrossRefGoogle Scholar
11.Wang, D-Y., Chang, C-L., Chen, Z-Y., and Ho, W-Y., Surf. Coat. Technol. 120–121, 629 (1999).CrossRefGoogle Scholar
12.Simmonds, M.C., Simmonds, A., Van Swyenhoven, H., Pfluger, E., and Mikhailov, S., Surf. Coat. Technol. 108–109, 340 (1998).CrossRefGoogle Scholar
13.Gilmore, R., Baker, M.A., Gibson, P.N., Gissler, X., Stoiber, M., Losbichler, P., and Mitterer, C., Surf. Coat. Technol. 108–109, 345 (1998).CrossRefGoogle Scholar
14.Rechberger, J. and Brunner, P., Surf. Coat. Technol. 62, 393 (1993).CrossRefGoogle Scholar
15.Wahl, K.J., Belin, M., and Singer, I.L., Wear 214, 212 (1998).CrossRefGoogle Scholar
16.Celis, J.P., Stals, L., Vancoille, E., and Mohrbacher, H., Surf. Eng. 14, 205 (1998).CrossRefGoogle Scholar
17.Mohrbacher, H., Blanpain, B., Celis, J-P., and Roos, J.R., Wear 180, 43 (1995).CrossRefGoogle Scholar
18.Zhang, X.L., Vitchev, R., Lauwerens, W., Stals, L., He, J.W., and Celis, J-P., Thin Solid Films 396, 69 (2001).CrossRefGoogle Scholar
19.Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., and Stupp, B.C., Appl. Phys. Lett. 57, 995 (1990).CrossRefGoogle Scholar
20.Grosseau-Poussard, J.L., Moine, P., and Brendle, M., Thin Solid Films 307, 163 (1997).CrossRefGoogle Scholar
21.Lancaster, J.K., ASLE Trans. 18, 187 (1975).CrossRefGoogle Scholar
22.Roberts, E.W., Thin Solid Films 181, 461 (1989).CrossRefGoogle Scholar
23.Zhuang, D. and Liu, J., Tribology 15, 341 (1995).Google Scholar
24.Barry, H.F. and Binkelman, J.P., Lubric. Eng. 22, 139 (1966).Google Scholar
25.Huq, M.Z. and Celis, J.P., Wear 225–229, 53 (1999).CrossRefGoogle Scholar
26.Xu, G., Zhou, Z., Liu, J., and Ma, X., Wear 225–259, 46 (1999).CrossRefGoogle Scholar
27.Muller, C., Menoud, C., Maillat, M., and Hintermann, H.E., Surf. Coat. Technol. 36, 351 (1988).CrossRefGoogle Scholar
28.Hilton, M.R., Bauer, R., and Fleischauer, P.D., Thin Solid Films 188, 219 (1990).CrossRefGoogle Scholar
29.Christy, R.I. and Ludwig, H.R., Thin Solid Films 64, 223 (1979).CrossRefGoogle Scholar
30.Spalvins, T., Thin Solid Films 90, 17 (1982).CrossRefGoogle Scholar
31.Singer, I.L., Fayeulle, S., and Ehni, P.D., Wear 195, 7 (1996).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 21 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-fgqm6 Total loading time: 0.308 Render date: 2021-01-16T22:05:21.250Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 21:53:54 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fretting wear rate of sulphur deficient MoSx coatings based on dissipated energy
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *