Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-24T21:21:58.864Z Has data issue: false hasContentIssue false

Facile synthesis of size-tunable lanthanum phosphate nanocrystals monodispersible in both organic and aqueous solutions

Published online by Cambridge University Press:  31 January 2011

Jingbo Li
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Wenbo Bu
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Limin Guo
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Zhenxing Chen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Feng Chen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Jianlin Shi*
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: jlshi@sunm.shcnc.ac.cn
Get access

Abstract

A facile one-pot synthetic approach, using oleic acid and oleylamine as composite stabilizers combined with high-temperature treatment in 1-octadecene, has been developed for the preparation of monodisperse and uniform lanthanum phosphate and europium-doped lanthanum phosphate nanocrystals. In particular, with the present synthetic approach, the size of the resulting nanocrystals could be tuned precisely and continuously from 3.5 to 6.5 nm by seed-mediated epitaxial growth. The as-obtained uniform nanocrystals with hydrophobic surfaces, which show efficient photoluminescence, could be easily dispersed in nonpolar solvents. More importantly, these nanocrystals can also be easily modified to water-dispersed ones with hydrophilic surfaces for potential use in in vitro imaging in bioanalysis. In addition, a synthetic mechanism for these monodisperse nanocrystals is presented and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tessler, N., Medvedev, V., Kazes, M., Kan, S.H., Banin, U.: Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506 2002CrossRefGoogle ScholarPubMed
2Chan, W.C.W., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 1998CrossRefGoogle ScholarPubMed
3Ferrari, M.: Cancer nanotechnology: Opportunities and challenges. Nat. Rev. 5, 161 2005CrossRefGoogle ScholarPubMed
4Medintz, I.L., Trammell, S.A., Mattoussi, H., Mauro, J.M.: Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126, 30 2004CrossRefGoogle ScholarPubMed
5Selvan, S.T., Patra, P.K., Ang, C.Y., Ying, J.Y.: Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. Engl. 46, 2448 2007CrossRefGoogle ScholarPubMed
6Cho, S.J., Maysinger, D., Jain, M., Roder, B., Hackbarth, S., Winnik, F.M.: Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23, 1974 2007CrossRefGoogle ScholarPubMed
7Lan, G.Y., Lin, Y.W., Huang, Y.F., Chang, H.T.: Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution. J. Mater. Chem. 17, 2661 2007CrossRefGoogle Scholar
8Green, M., Harwood, H., Barrowman, C., Rahman, P., Eggeman, A., Festry, F., Dobson, P., Ng, T.: A facile route to CdTe nanoparticles and their use in bio-labelling. J. Mater. Chem. 17, 1989 2007CrossRefGoogle Scholar
9Chen, W., Joly, A.G., McCready, D.E.: Upconversion luminescence from CdSe nanoparticle. J. Chem. Phys. 122, 224708 2005CrossRefGoogle Scholar
10Peng, X., Schalamp, M.C., Kadavanich, A., Alivisators, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019 1997CrossRefGoogle Scholar
11Norberg, N.S., Parks, G.L., Salley, G.M., Gamelin, D.R.: Giant excitonic zeeman splittings in colloidal Co2+-doped ZnSe quantum dots. J. Am. Chem. Soc. 128, 13195 2006CrossRefGoogle ScholarPubMed
12Swanson, S.A., Wallraff, G.M., Chen, J.P., Zhang, W., Bozano, L.D., Carter, K.R., Salem, J.R., Villa, R., Scott, J.C.: Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission. Chem. Mater. 15, 2305 2003CrossRefGoogle Scholar
13Bojinov, V.B., Grabchev, I.K.: Synthesis of ethyl 3-aryl-1-methyl-8-oxo- 8H-anthra[9,1-gh]quinoline-2-carboxylates as dyes for potential application in liquid crystal displays. Org. Lett. 5, 2185 2003CrossRefGoogle ScholarPubMed
14Meiser, F., Cortez, C., Caruso, F.: Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem. Int. Ed. Engl. 43, 5954 2004CrossRefGoogle ScholarPubMed
15Hutchison, A.J.: On the basis of this and other studies using lanthanum ions for medical applications, LaPO4 NPs are expected to show low toxicity. Perit. Dial. Int. 19, S408 1999CrossRefGoogle Scholar
16Meyssamy, H., Riwotzki, K., Kornowski, A., Naused, S., Haase, M.: Wet-chemical synthesis of doped colloidal nanomaterials: Particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb. Adv. Mater. 11, 840 19993.0.CO;2-2>CrossRefGoogle Scholar
17Lehmann, O., Meyssamy, H., Kömp, K., Schnablegger, H., Haase, M.: Synthesis, growth, and Er3+ luminescence of lanthanide phosphate nanoparticles. J. Phys. Chem. B 107, 7449 2003CrossRefGoogle Scholar
18Riwotzki, K., Meyssamy, H., Schnablegger, H., Kornowski, A., Haase, M.: Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals. Angew. Chem. Int. Ed. Engl. 40, 573 20013.0.CO;2-0>CrossRefGoogle ScholarPubMed
19Mai, H.X., Zhang, Y.W., Sun, L.D., Yan, C.H.: Orderly aligned and highly luminescent monodisperse rare-earth orthophosphate nanocrystals synthesized by a limited anion-exchange reaction. Chem. Mater. 19, 4514 2007CrossRefGoogle Scholar
20Huo, Z.H., Chen, C., Chu, D.R., Li, H.H., Li, Y.D.: Systematic synthesis of lanthanide phosphate nanocrystals. Chem. Eur. J. 13, 7708 2007CrossRefGoogle ScholarPubMed
21Yu, L., Song, H., Lu, S., Liu, Z., Yang, L., Kong, X.: Luminescent properties of LaPO4:Eu nanoparticles and nanowires. J. Phys. Chem. B 108, 16697 2004CrossRefGoogle Scholar
22Buissette, V., Moreau, M., Gacoin, T., Boilot, J.P., Ching, J.Y.C., Mercier, T.L.: Colloidal synthesis of luminescent rhabdophane LaPO4:Ln3+xH2O (Ln = Ce, Tb, Eu; x ≈ 0.7) nanocrystals. Chem. Mater. 16, 3767 2004CrossRefGoogle Scholar
23Buhler, G., Feldmann, C.: Microwave-assisted synthesis of luminescent LaPO4:Ce,Tb nanocrystals in ionic liquids. Angew. Chem. Int. Ed. Engl. 45, 4864 2006CrossRefGoogle Scholar
24Schuetz, P., Caruso, F.: Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chem. Mater. 14, 4509 2002CrossRefGoogle Scholar
25Maceira, V.S., Correa-Duarte, M.A., Spasova, M., Liz-Marzán, L.M., Farle, M.: Composite silica spheres with magnetic and luminescent functionalities. Adv. Funct. Mater. 16, 509 2006CrossRefGoogle Scholar
26Bu, W., Hua, Z., Chen, H., Shi, J.: Epitaxial synthesis of uniform cerium phosphate one-dimensional nanocable heterostructures with improved luminescence. J. Phys. Chem. B 109, 14461 2005CrossRefGoogle ScholarPubMed
27Bu, W., Chen, H., Hua, Z., Shi, J.: Surfactant-assisted synthesis of Tb(III)-doped cerium phosphate single-crystalline nanorods with enhanced green emission. Appl. Phys. Lett. 85, 4307 2004CrossRefGoogle Scholar
28Park, J., An, K., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., Hyeon, T.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nature 3, 891 2004CrossRefGoogle ScholarPubMed
29Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G.: Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273 2004CrossRefGoogle ScholarPubMed
30Lee, C.H., Kim, M., Kim, T., Kim, A., Peak, J., Lee, J.W., Choi, S.Y., Kim, K., Park, J.B., Lee, K.: Ambient pressure syntheses of size-controlled corundum-type In2O3 nanocubes. J. Am. Chem. Soc. 128, 9326 2006CrossRefGoogle ScholarPubMed
31Chen, W., Wang, S., Westcott, S., Zhang, J., Joly, A.G., McCready, D.E.: Structure and luminescence of BaFBr:Eu2+ and BaFBr:Eu2+, Tb3+ phosphors and thin films. J. Appl. Phys. 97, 83506 2005CrossRefGoogle Scholar
32Diaz, A., Keszler, D.: Eu2+ Luminescence in the borates X2Z(BO3)2 (X = Ba, Sr; Z = Mg, Ca). Chem. Mater. 9, 2071 1997CrossRefGoogle Scholar
33Chen, W., Zhang, J., Westcott, S.L., Joly, A.G., Malm, J.O., Bovin, J.O.: The origin of x-ray luminescence from CdTe nanoparticles in CdTe/BaFBr:Eu2+ nanocomposite phosphors. J. Appl. Phys. 99, 034302 2006CrossRefGoogle Scholar
34Raehm, L., Mehdi, A., Wickleder, C., Reye, C., Corriu, R.J.P.: Unexpected coordination chemistry of bisphenanthroline complexes within hybrid materials: A mild way to Eu2+ containing materials with bright yellow luminescence. J. Am. Chem. Soc. 129, 12636 2007CrossRefGoogle ScholarPubMed
35Kim, S.W., Kim, S., Tracy, J.B., Jassnoff, A., Bawendi, M.G.: Phosphine oxide polymer for water-soluble nanoparticles. J. Am. Chem. Soc. 127, 4556 2005CrossRefGoogle ScholarPubMed
36Ackerson, C.J., Jadzinsky, P.D., Kornberg, R.D.: Thiolate ligands for synthesis of water-soluble gold clusters. J. Am. Chem. Soc. 127, 6550 2005CrossRefGoogle ScholarPubMed
37Euliss, L.E., Grancharov, S.G., O’Brien, S., Deming, T.J., Stucky, G.D., Murray, C.B., Held, G.A.: Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett. 3, 1489 2003CrossRefGoogle Scholar
38Wang, Y., Wong, J.F., Teng, X., Lin, X.Z., Yang, H.: “Pulling” nanoparticles into water: Phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of α-cyclodextrin. Nano Lett. 3, 1555 2003CrossRefGoogle Scholar