Hostname: page-component-5d59c44645-mhl4m Total loading time: 0 Render date: 2024-02-21T19:45:24.160Z Has data issue: false hasContentIssue false

Effects of the pyromellitic dianhydride cathode interfacial layer on characteristics of organic solar cells based on poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl C61 butyric acid methyl ester

Published online by Cambridge University Press:  31 January 2011

Mi Ran Moon
Affiliation:
Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Jungwoo Kim
Affiliation:
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Donggeun Jung*
Affiliation:
Department of Physics, Brain Korea 21 Physics Research Division, Institute of Basic Science, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Hyoungsub Kim
Affiliation:
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Heeyeop Chae
Affiliation:
Department of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
Junsin Yi
Affiliation:
School of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746 Republic of Korea
*
a)Address all correspondence to this author. e-mail: djung@skku.ac.kr
Get access

Abstract

This study examined the performance of poly(3-hexylthiophene-2,5-diyl)(P3HT)- and [6,6]-phenyl C61 butyric acid methyl ester (PCBM)-based organic solar cells (OSCs) with a pyromellitic dianhydride (PMDA) cathode interfacial layer between the active layer and cathode. The effect of inserting the cathode interfacial layer with different thicknesses was investigated. For the OSC samples with a 0.5 nm thick PMDA layer, the power conversion efficiency (PCE) was approximately 2.77% under 100 mW/cm2 (AM1.5) simulated illumination. It was suggested that the PMDA cathode interfacial layer acts as an exciton blocking layer, leading to an enhancement of the OSC performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995)Google Scholar
2.Moliton, A., Nunzi, J-M.How to model the behavior of organic photovoltaic cells. Polym. Int. 55, 583 (2006)Google Scholar
3.Chen, F.C., Wu, J.L., Yang, S.S., Hsieh, K.H., Chen, W.C.Cesium carbonate as a functional interlayer for polymer photovoltaic devices. J. Appl. Phys. 103, 103721 (2008)Google Scholar
4.Peumans, P., Bulović, V., Forrest, S.R.Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl. Phys. Lett. 76, 2650 (2008)Google Scholar
5.Peumans, P., Forrest, S.R.Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126 (2001)Google Scholar
6.Ichikawa, M., Amagai, J., Horiba, Y., Koyama, T., Taniguchi, Y.Dynamic turn-on behavior of organic light-emitting devices with different work function cathode metals under fast pulse excitation. J. Appl. Phys. 94, 7796 (2003)Google Scholar
7.Chan, M.Y., Lee, C.S., Lai, S.L., Fung, M.K., Wong, F.L., Sun, H.Y., Lau, K.M., Lee, S.T.Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer. J. Appl. Phys. 100, 094506 (2006)Google Scholar
8.Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S., Denk, P.Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288 (2002)Google Scholar
9.Ahlswede, E., Hanisch, J., Powalla, M.Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells. Appl. Phys. Lett. 90, 163504 (2007)Google Scholar
10.Nam, E., Park, H., Park, K., Moon, M.R., Sohn, S., Jung, D., Yi, J., Chae, H., Kim, H.Electroluminescence and impedance analyses of organic light emitting diodes using anhydride materials as cathode interfacial layers. Thin Solid Films 517, 4131 (2009)Google Scholar
11.Andrzejak, M., Mazur, G., Petelenz, P.Quantum chemical results as input for solid state calculations: Charge transfer states in molecular crystals. J. Mol. Struct. 527, 91 (2000)Google Scholar
12.Parthasarathy, G., Burrows, P.E., Khalfin, V., Kozolv, V.G., Forrest, S.R.A metal-free cathode for organic semiconductor devices. Appl. Phys. Lett. 72, 2138 (1998)Google Scholar
13.Peumans, P., Yakimov, A., Forrest, S.R.Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693 (2003)Google Scholar
14.Nalwa, H.S.Handbook of Organic Electronics and Photonics (American Scientific Publishers, Los Angeles, CA 2006)180192Google Scholar
15.Hau, S.K., Yip, H-L., Acton, O., Baek, N.S., Ma, H., Jen, A.K-Y.Interfacial modification to improve inverted polymer solar cells. J. Mater. Chem. 18, 5113 (2008)Google Scholar
16.Lee, S.K., Cho, N.S., Kwak, J.H., Lim, K.S., Shim, H-K., Hwang, D-H., Brabec, C.J.New low band-gap alternating polyfluorene derivatives for photovoltaic cells. Thin Solid Films 511, 157 (2006)Google Scholar