Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T00:15:10.277Z Has data issue: false hasContentIssue false

Effect of Streptococcus mutans on mechanical properties of human dental structures

Published online by Cambridge University Press:  31 January 2011

Shou-Yi Chang*
Affiliation:
Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan
Ren-Jei Chung
Affiliation:
Graduate Institute of Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
Hung-Bin Hsu
Affiliation:
Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan
*
a) Address all correspondence to this author. e-mail: shouyi@dragon.nchu.edu.tw
Get access

Abstract

In this study, the mechanical properties of human dental structures have been investigated by using instrumented nanoindentation. Immersion in solutions containing Streptococcus mutans, which is the principal cause of dental caries, was applied to tooth specimens to clarify its effect on the microstructure and mechanical properties of the dental structures. With an extended time of up to 16 h, the pH value of the S. mutans solutions dropped from 7.3 to 5.8. Therefore, after immersion in the S. mutans solutions for 16 h, slight erosions of the dental structures began; after 64 h, severe tooth decay occurred with obviously etched dental features. After 128 h, the elastic modulus of enamel and dentine dropped to 85 and 67%, respectively, of the original values of untreated specimens, and the hardness dropped to 88 and 55%, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ji, B. and Gao, H.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963 (2004).CrossRefGoogle Scholar
2Gupta, H.S., Wagermaier, W., Zickler, G.A., Aroush, D.R.B., Funari, S.S., Roschger, P., Wagner, H.D., and Fratzl, P.: Nanoscale deformation mechanisms in bone. Nano Lett. 5(2108), 2108 (2005).CrossRefGoogle ScholarPubMed
3Kinney, J.H., Balooch, M., Marshall, G.W. Jr., , Marshall, S.J., and Weihs, T.P.: Hardness and Young's modulus of human peritubular and intertubular dentine. Arch. Oral Biol. 41, 9 (1996).CrossRefGoogle ScholarPubMed
4Angker, L. and Swain, M.V.: Nanoindentation: Application to dental hard tissue investigations. J. Mater. Res. 21, 1893 (2006).CrossRefGoogle Scholar
5He, L.H. and Swain, M.V.: Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials 28, 4512 (2007).CrossRefGoogle ScholarPubMed
6He, L.H. and Swain, M.V.: Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J. Mech. Behav. Biomed. Mater. 1, 18 (2008).CrossRefGoogle ScholarPubMed
7Habelitz, S., Marshall, S.J., Marshall, G.W. Jr., , and Balooch, M.: Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol. 46, 173 (2000).CrossRefGoogle Scholar
8Ge, J., Cui, F.Z., Wang, X.M., and Feng, H.L.: Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26, 3333 (2005).CrossRefGoogle ScholarPubMed
9Marshall, S.J., Balooch, M., Habelitz, S., Balooch, G., Gallagher, R., and Marshall, G.W. Jr.,: The dentin-enamel junction-a natural, multilevel interface. J. Eur. Ceram. Soc. 23, 2897 (2003).CrossRefGoogle Scholar
10Joiner, A., Thakker, G., and Cooper, Y.: In vitro evaluation of a novel 6% hydrogen peroxide tooth whitening product. J. Dent. 32, 27 (2004).CrossRefGoogle ScholarPubMed
11Sulieman, M., Addy, M., Macdonald, E., and Rees, J.S.: A safety study in vitro for the effects of an in-office bleaching system on the integrity of enamel and dentine. J. Dent. 32, 581 (2004).CrossRefGoogle ScholarPubMed
12Hairul Nizam, B.R., Lim, C.T., Chng, H.K., and Yap, A.U.J.: Nanoindentation study of human premolars subjected to bleaching agent. J. Biomech. 38, 2204 (2005).CrossRefGoogle ScholarPubMed
13Chng, H.K., Ramli, H.N., Yap, A.U.J., and Lim, C.T.: Effect of hydrogen peroxide on intertubular dentine. J. Dent. 33, 363 (2005).CrossRefGoogle ScholarPubMed
14Al-Salehi, S.K., Wood, D.J., and Hatton, P.V.: The effect of 24 h nonstop hydrogen peroxide concentration on bovine enamel and dentine mineral content and microhardness. J. Dent. 33, 845 (2007).CrossRefGoogle Scholar
15Hooper, S.M., Hughes, J.A., Newcombe, R.G., Addy, M., and West, N.X.: A methodology for testing the erosive potential of sports drinks. J. Dent. 33, 343 (2005).CrossRefGoogle ScholarPubMed
16Barbour, M.E., Parker, D.M., Allen, G.C., and Jandt, K.D.: Human enamel erosion in constant composition citric acid solutions as a function of degree of saturation with respect to hydroxyapatite. J. Oral Rehabil. 32, 16 (2005).CrossRefGoogle ScholarPubMed
17Jandt, K.D.: Probing the future in functional soft drinks on the nanometre scale–Towards tooth friendly soft drinks. Trends Food Sci. Technol. 17, 263 (2006).CrossRefGoogle Scholar
18Tahmassebi, J.F., Duggal, M.S., Malik-Kotru, G., and Curzon, M.E.J.: Soft drinks and dental health: A review of the current literature. J. Dent. 34, 2 (2006).CrossRefGoogle ScholarPubMed
19Wongkhantee, S., Patanapiradej, V., Maneenut, C., and Tantbirojn, D.: Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J. Dent. 34, 214 (2006).CrossRefGoogle ScholarPubMed
20Loesche, W.J.: Role of S., mutans in human dental decay. Microbiol. Rev. 50, 353 (1986).CrossRefGoogle ScholarPubMed
21Ajdic, D., McShan, W.M., McLaughlin, R.E., Savic, G., Chang, J., Carson, M.B., Primeaux, C., Tian, R., Kenton, S., Jia, H., Lin, S., Qian, Y., Li, S., Zhu, H., Najar, F., Lai, H., White, J., Roe, B.A., and Ferretti, J.J.: Genome sequence of S. mutans UA159, a cariogenic dental pathogen. Proc. Nat. Acad. Sci. U.S.A. 99, 14434 (2002).CrossRefGoogle ScholarPubMed
22Geddes, D.A.M.: Acids produced by human dental plaque metabolism in situ. Caries Res. 9, 98 (1975).CrossRefGoogle ScholarPubMed
23Hashizume, L.N., Shinada, K., Kawaguchi, Y., and Yamashita, Y.: Sequence of ultrastructural changes of enamel crystals and S. mutans biofilm in early enamel caries in vitro. J. Med. Dent. Sci. 49, 67 (2002).Google ScholarPubMed
24Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
25Fischer-Cripps, A.C.: Nanoindentation (Springer-Verlag, New York, NY, 2002).CrossRefGoogle Scholar
26Chang, S.Y. and Chang, T.K.: Grain size effect on nanomechanical properties and deformation behavior of copper under instrumented nanoindentation. J. Appl. Phys. 101, 033507 (2007).CrossRefGoogle Scholar
27Sissons, C.H., Anderson, S.A., Wong, L., Coleman, M.J., and White, D.C.: Microbiota of plaque microcosm biofilms: Effect of three times daily sucrose pulses in different simulated oral environments. Caries Res. 41, 413 (2007).CrossRefGoogle ScholarPubMed
28Kleinberg, I.: A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: An alternative to S. mutans and the specific-plaque hypothesis. Crit. Rev. Oral Biol. Med. 13, 108 (2002).CrossRefGoogle Scholar
29Habelitz, S., Marshall, G.W. Jr, Balooch, M., and Marshall, S.J.: Nanoindentation and storage of Teeth. J. Biomech. 35, 995 (2002).CrossRefGoogle ScholarPubMed
30Robinson, C., Weatherell, J.A., and Kirkham, J.: The Chemistry of Dental Caries, in Dental Enamel–Formation to Destruction, edited by Robinson, C., Kirkham, J., and Shore, R. (CRC Press, Boca Raton, FL, 1995), pp. 223–243.Google Scholar
31Dickinson, M.E., Wolf, K.V., and Mann, A.B.: Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel. Arch. Oral Biol. 52, 753 (2007).CrossRefGoogle ScholarPubMed