Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-22T17:03:24.640Z Has data issue: false hasContentIssue false

Effect of heat treatment on the modification of microstructure of selective laser melted (SLM) IN718 and its consequences on mechanical behavior

Published online by Cambridge University Press:  24 June 2020

R.J. Vikram
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore560012, India
Anubhav Singh
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore560012, India
Satyam Suwas*
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore560012, India
*
a)Address all correspondence to this author. e-mail: satyamsuwas@iisc.ac.in
Get access

Abstract

In this investigation, the superalloy IN718 has been prepared by additive manufacturing (AM) following a selective laser melting technique, and the post-AM heat treatments have been optimized. The microstructure of additively manufactured (AM) IN718 is characterized by the presence of dendritic and cellular features with large spatial heterogeneity along and across the build plane. Along the build direction, the 〈100〉 fiber texture dominates. Heat treatment involving two-step solution treatment, and subsequently, two-step aging treatment was specifically designed to facilitate the precipitation of δ phase at the grain boundaries to make the material resistant to grain boundary sliding (GBS). The AM IN718 showed dynamic strain aging (DSA) at three different temperatures, while the critical strain for the onset of serration was extended to a higher value after the heat treatment.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thomas, A., El-Wahabi, M., Cabrera, J.M., and Prado, J.M.: High temperature deformation of Inconel 718. J. Mater. Process. Technol. 177, 469472 (London, 2006).CrossRefGoogle Scholar
Manikandan, S.G.K., Sivakumar, D., and Kamaraj, M.: Welding the Inconel 718 Superalloy (Elsevier, London, 2019).Google Scholar
Schafrik, R.E., Ward, D.D., and Groh, J.R.: Application of alloy 718 in GE aircraft engines: Past, present and next five years. In Superalloys 718, 625,706 and Various Derivatives, Loria, E.A., ed. (TMS, Warrendale, PA, USA, 2001); pp. 112.Google Scholar
Donachie, M.J., and Donachie, S.J.: Superalloys: A Technical Guide. ASM International (Materials Park, OH, 2002). ISBN 0871707497, 9780871707499.CrossRefGoogle Scholar
Yuan, H., and Liu, W.C.: Effect of the δ phase on the hot deformation behavior of Inconel 718. Mater. Sci. Eng. A 408, 281289 (2005).CrossRefGoogle Scholar
Nunes, R.M., Pereira, D., Clarke, T., and Hirsch, T.K.: Delta phase characterization in Inconel 718 alloys through X-ray diffraction. ISIJ Int. 55, 24502454 (2015).CrossRefGoogle Scholar
Special Metals Corporation, Inconel Alloy 718 – Physical constants and thermal properties (2007). Available at: www.specialmetals.com.Google Scholar
Kuo, C.M., Yang, Y.T., Bor, H.Y., Wei, C.N., and Tai, C.C.: Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Mater. Sci. Eng. A 510–511, 289294 (2009).CrossRefGoogle Scholar
Li, S., Yang, J., Zhuang, J., Deng, Q., and Du, J.: The effect of delta-phase on crack propagation under creep and fatigue conditions in alloy 718. In Superalloys 718, 625,706 and Various Derivatives, Loria, E.A., ed. (TMS, Warrendale, PA, USA, 1994); pp. 6578.Google Scholar
Kuo, Y.L., Nagahari, T., and Kakehi, K.: The effect of post-processes on the microstructure and creep properties of Alloy718 built up by selective laser melting. Materials (Basel) 11 (2018). doi:10.3390/ma11060996.CrossRefGoogle ScholarPubMed
Li, N., Huang, S., Zhang, G., Qin, R., Liu, W., Xiong, H., Shi, G., and Blackburn, J.: Progress in additive manufacturing on new materials: A review. J. Mater. Sci. Technol. 242269 (2019). doi:10.1016/j.jmst.2018.09.002.CrossRefGoogle Scholar
DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., and Zhang, W.: Additive manufacturing of metallic components – Process, structure and properties. Prog. Mater. Sci. 92, 112224 (2018).CrossRefGoogle Scholar
Yadollahi, A. and Shamsaei, N.: Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int. J. Fatigue. 98, 1431 (2017).CrossRefGoogle Scholar
Prakash, K.S., Nancharaih, T., and Rao, V.V.S.: Additive manufacturing techniques in manufacturing – An overview. Mater. Today Proc. 5, 38733882 (2018).CrossRefGoogle Scholar
Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., and Hui, D.: Additive manufacturing (3D Printing): A review of materials methods applications and challenges. Compos. B Eng. 143, 172196 (2018).CrossRefGoogle Scholar
Acharya, R., Sharon, J.A., and Staroselsky, A.: Prediction of microstructure in laser powder bed fusion process. Acta Mater. 124, 360371 (2017).CrossRefGoogle Scholar
Yap, C.Y., Chua, C.K., Dong, Z.L., Liu, Z.H., Zhang, D.Q., Loh, L.E., and Sing, S.L.: Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2 (2015). doi:10.1063/1.4935926.CrossRefGoogle Scholar
Lavoie, M. and Addis, J.L.: Harnessing the potential of additive manufacturing technologies: Challenges and opportunities for entrepreneurial strategies. Int. J. Innovation Stud. 2, 123136 (2018).CrossRefGoogle Scholar
Nandwana, P., Kirka, M., Okello, A., and Dehoff, R.: Electron beam melting of Inconel 718: Effects of processing and post-processing. Mater. Sci. Technol. 34, 612619 (2018).CrossRefGoogle Scholar
Deng, D., Peng, R.L., Söderberg, H., and Moverare, J.: On the formation of microstructural gradients in a nickel-base superalloy during electron beam melting. Mater. Des. 160, 251261 (2018).CrossRefGoogle Scholar
Sames, W.J., Unocic, K.A., Dehoff, R.R., Lolla, T., and Babu, S.S.: Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting. J. Mater. Res. 29, 19201930 (2014).CrossRefGoogle Scholar
Schirra, J.J., Caless, R.H., and Hatala, R.W.: The effect of laves phase on the mechanical properties of wrought and cast + HIP Inconel 718. In Superalloys 718, 625 Various Derivatives, Loria, E.A., ed. (TMS, Warrendale, PA, USA, 1991); pp. 375388.CrossRefGoogle Scholar
Chen, Y., Guo, Y., Xu, M., Ma, C., Zhang, Q., Wang, L., Yao, J., and Li, Z.: Study on the element segregation and Laves phase formation in the laser metal deposited IN718 superalloy by flat top laser and Gaussian distribution laser. Mater. Sci. Eng. A 754, 339347 (2019).CrossRefGoogle Scholar
Radhakrishna, C. and Prasad Rao, K.: The formation and control of Laves phase in superalloy 718 welds. J. Mater. Sci. 32, 19771984 (1997).CrossRefGoogle Scholar
Deng, D., Moverare, J., Peng, R.L., and Söderberg, H.: Microstructure and anisotropic mechanical properties of EBM manufactured Inconel 718 and effects of post heat treatments. Mater. Sci. Eng. A 693, 151163 (2017).CrossRefGoogle Scholar
Li, J., Zhao, Z., Bai, P., Qu, H., Liu, B., Li, L., Wu, L., Guan, R., Liu, H., and Guo, Z.: Microstructural evolution and mechanical properties of IN718 alloy fabricated by selective laser melting following different heat treatments. J. Alloys Compd. 772, 861870 (2019).CrossRefGoogle Scholar
Vikram, R.J., Murty, B.S., Fabijanic, D., and Suwas, S.: Insights into micro-mechanical and texture response of additively manufactured eutectic high entropy alloy (AlCoCrFeNi2.1). J. Alloys Compd. 827, 154034 (2020).CrossRefGoogle Scholar
Ni, M., Liu, S., Chen, C., Li, R., Zhang, X., and Zhou, K.: Effect of heat treatment on the microstructural evolution of a precipitation-hardened superalloy produced by selective laser melting. Mater. Sci. Eng. A. 748, 275285 (2019).CrossRefGoogle Scholar
Holland, S., Wang, X., Fang, X., Guo, Y., Yan, F., and Li, L.: Grain boundary network evolution in Inconel 718 from selective laser melting to heat treatment. Mater. Sci. Eng. A 725, 406418 (2018).CrossRefGoogle Scholar
Vikram, R.J., Gaddam, S., Kalsar, R., Acharya, S., and Suwas, S.: A fractal approach to predict the oxidation and corrosion behavior of a grain boundary engineered low SFE high entropy alloy. Materialia 7, 100398 (2019).CrossRefGoogle Scholar
Mitchell, A., Schmalz, A.J., Schvezov, C., and Cockroft, S.L.: The precipitation of primary carbides in Alloy718. In Superalloys 718, 625,706 and Various Derivatives, Loria, E.A., ed. (TMS, Warrendale, PA, USA, 1994); pp. 6578.CrossRefGoogle Scholar
Sundararaman, M., Mukhopadhyay, P., and Banerjee, S.: Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties. In Superalloys 718,625,706 and Various Derivatives, Loria, E.A., ed. (TMS, Warrendale, PA, USA, 1997); pp. 367378.CrossRefGoogle Scholar
Kirka, M.M., Unocic, K.A., Raghavan, N., Medina, F., Dehoff, R.R., and Babu, S.S.: Microstructure development in electron beam-melted Inconel 718 and associated tensile properties. JOM 68, 10121020 (2016).CrossRefGoogle Scholar
Han, D.W., Yu, L.X., Liu, F., Zhang, B., and Sun, W.R.: Effect of heat treatment on the microstructure and mechanical properties of the modified 718 Alloy. Acta Metall. Sin. (English Lett.) 31, 12241232 (2018).CrossRefGoogle Scholar
Goodfellow, A.J., Owen, L.R., Christofidou, K.A., Kelleher, J., Hardy, M.C., and Stone, H.J.: The effect of temperature and Mo content on the lattice misfit of model Ni-based superalloys. Metals (Basel) 9, 19 (2019).CrossRefGoogle Scholar
Tao, P., Li, H., Huang, B., Hu, Q., Gong, S., and Xu, Q.: The crystal growth, intercellular spacing and microsegregation of selective laser melted Inconel 718 superalloy. Vacuum 159, 382390 (2019).CrossRefGoogle Scholar
Francois, M.M., Sun, A., King, W.E., Henson, N.J., Tourret, D., Bronkhorst, C.A., Carlson, N.N., Newman, C.K., Haut, T., Bakosi, J., Gibbs, J.W., Livescu, V., Vander Wiel, S.A., Clarke, A.J., Schraad, M.W., Blacker, T., Lim, H., Rodgers, T., Owen, S., Abdeljawad, F., Madison, J., Anderson, A.T., Fattebert, J.-L., Ferencz, R.M., Hodge, N.E., Khairallah, S.A., and Walton, O.: Modeling of additive manufacturing processes for metals: Challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 21, 198206 (2017).CrossRefGoogle Scholar
Ali, H., Ghadbeigi, H., and Mumtaz, K.: Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4 V. Mater. Sci. Eng. A 712, 175187 (2018).CrossRefGoogle Scholar
Oshube, O.E.: Fiber laser welding of nickel-based superalloy IN718. Theses and dissertations, 2012. Available at: http://hdl.handle.net/1993/8444.Google Scholar
Popovich, V.A., Borisov, E.V., Popovich, A.A., Sufiiarov, V.S., Masaylo, D.V., and Alzina, L.: Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Mater. Des. 114, 441449 (2017).CrossRefGoogle Scholar
Simchi, A.: Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features. Mater. Sci. Eng. A 428, 148158 (2006).CrossRefGoogle Scholar
Wan, H.Y., Zhou, Z.J., Li, C.P., Chen, G.F., and Zhang, G.P.: Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J. Mater. Sci. Technol. 34, 17991804 (2018).CrossRefGoogle Scholar
Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q.: Selective laser melting 3D printing of Ni-based superalloy: Understanding thermodynamic mechanisms. Sci. Bull. 61, 10131022 (2016).CrossRefGoogle Scholar
Geiger, F., Kunze, K., and Etter, T.: Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies. Mater. Sci. Eng. A 661, 240246 (2016).CrossRefGoogle Scholar
Kuo, Y.L., Horikawa, S., and Kakehi, K.: Effects of build direction and heat treatment on creep properties of Ni-base superalloy built up by additive manufacturing. Scr. Mater. 129, 7478 (2017).CrossRefGoogle Scholar
Renderos, M., Torregaray, A., Gutierrez-Orrantia, M.E., Lamikiz, A., Saintier, N., and Girot, F.: Microstructure characterization of recycled IN718 powder and resulting laser clad material. Mater. Charact. 134, 103113 (2017).CrossRefGoogle Scholar
Cakmak, E., Kirka, M.M., Watkins, T.R., Cooper, R.C., An, K., Choo, H., Wu, W., Dehoff, R.R., and Babu, S.S.: Microstructural and micromechanical characterization of IN718 theta shaped specimens built with electron beam melting. Acta Mater. 108, 161175 (2016).CrossRefGoogle Scholar
Kou, S.: Welding Metallurgy (John Wiley & Sons, 2003). ISBN 0-471-43491-4.Google Scholar
Viardin, A., Založnik, M., Souhar, Y., Apel, M., and Combeau, H.: Mesoscopic modeling of spacing and grain selection in columnar dendritic solidification: Envelope versus phase-field model. Acta Mater. 122, 386399 (2017).CrossRefGoogle Scholar
Thijs, L., Montero Sistiaga, M.L., Wauthle, R., Xie, Q., Kruth, J.P., and Van Humbeeck, J.: Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Mater. 61, 46574668 (2013).CrossRefGoogle Scholar
Ma, M., Wang, Z., and Zeng, X.: Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy. Mater. Charact. 106, 420427 (2015).CrossRefGoogle Scholar
Hassan, B. and Corney, J.: Grain boundary precipitation in Inconel 718 and ATI 718Plus. Mater. Sci. Technol. 33, 18791889 (2017).CrossRefGoogle Scholar
Chang, S.H., Lee, S.C., and Huang, K.T.: Influences of γ and δ precipitations on the microstructural properties of 718 alloy through HIP, solid-solution, and different aging heat treatments. Mater. Trans. 51, 16831688 (2010).CrossRefGoogle Scholar
Burke, M.G. and Miller, M.K.: Precipitation in Alloy 718: A Combined AEM and APFIM Investigation. (The Minerals, Metals, and Materials Society, 1991); pp. 337–350. doi:10.7449/1991/Superalloys_1991_337_350.CrossRefGoogle Scholar
Madhusudhana Reddy, G., Srinivasa Murthy, C.V., Srinivasa Rao, K., and Prasad Rao, K.: Improvement of mechanical properties of Inconel 718 electron beam welds-influence of welding techniques and postweld heat treatment. Int. J. Adv. Manuf. Technol. 43, 671680 (2009).CrossRefGoogle Scholar
Chen, Y., Zhang, K., Huang, J., Hosseini, S.R.E., and Li, Z.: Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Mater. Des. 90, 586594 (2016).CrossRefGoogle Scholar
Max, B., San Juan, J., , M.L., Cloue, J.M., Viguier, B., and Andrieu, E.: Atomic species associated with the Portevin–Le Chatelier effect in superalloy 718 studied by mechanical spectroscopy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49, 20572068 (2018).CrossRefGoogle Scholar
Weaver, M.L. and Hale, C.S.: Effects of precipitation on serrated yielding in Inconel 718. (The Minerals, Metals, and Materials Society, 2001); pp. 421–432. doi:10.7449/2001/superalloys_2001_421_432.CrossRefGoogle Scholar
Yeh, A.C., Lu, K.W., Kuo, C.M., Bor, H.Y., and Wei, C.N.: Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy. Mater. Sci. Eng. A 530, 525529 (2011).CrossRefGoogle Scholar
Nalawade, S., Mahadevan, S., Singh, J.B., Ramaswamy, K., and Verma, A.: Serrated yielding in alloy 718. In 7th Int. Symp. Superalloy 718 Deriv. 2010, vol. 2 (2010); pp. 809823. doi:10.1002/9781118495223.ch62.Google Scholar
Ho, I.T., Chen, Y.T., Yeh, A.C., Chen, C.P., and Jen, K.K.: Microstructure evolution induced by inoculants during the selective laser melting of IN718. Addit. Manuf. 21, 465471 (2018).Google Scholar
Beese, A.M., Wang, Z., Stoica, A.D., and Ma, D.: Absence of dynamic strain aging in an additively manufactured nickel-base superalloy. Nat. Commun. 9, 18 (2018).CrossRefGoogle Scholar
Wang, Y., Shao, W.Z., Zhen, L., Yang, C., and Zhang, X.M.: Tensile deformation behavior of superalloy 718 at elevated temperatures. J. Alloys Compd. 471, 331335 (2009).CrossRefGoogle Scholar
Suwas, S. and Ray, R.K.: Crystallographic Texture of Materials (Springer, London, 2014).CrossRefGoogle Scholar
Saleh, Ahmed A., Pereloma, Elena V., Gazder, Azdiar A., Texture evolution of Fe -24Mn -3Al -2Si -1Ni -0.06 TWIP steel, Materials Science and Engineering: A 528, 45374549 (2011).CrossRefGoogle Scholar