Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-7x8lp Total loading time: 0.255 Render date: 2021-02-25T16:10:27.559Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Directional solidification and microstructural studies of the peritectic Y2BaCuO5 phase

Published online by Cambridge University Press:  31 January 2011

E. Sudhakar Reddy
Affiliation:
ACCESS, e.V. Materials Sciences, Intzestrasse 5, D-52072, Aachen, Germany
J. G. Noudem
Affiliation:
ACCESS, e.V. Materials Sciences, Intzestrasse 5, D-52072, Aachen, Germany
M. Tarka
Affiliation:
ACCESS, e.V. Materials Sciences, Intzestrasse 5, D-52072, Aachen, Germany
G. J. Schmitz
Affiliation:
ACCESS, e.V. Materials Sciences, Intzestrasse 5, D-52072, Aachen, Germany
Get access

Abstract

Directional solidification using a Bridgman furnace was performed to produce textured Y2BaCuO5 (211) rods of both stoichiometric and off-stoichiometric compositions and to investigate microstructure formation at various solidification rates. The solidification morphology of the samples changed from planar to cellular and eventually to equiaxed blocky grains with increasing solidification rate. The microstructure of the stoichiometric 211 sample revealed elongated, aligned YBa2Cu3Oy (123) phase residual in the 211 matrix. The 211 samples rich in Y2O3 phase showed no trace of residual 123 but did show trapped Y2O3 particles. The morphology of the Y2O3 particles varied from spherical to a rodlike morphology as well along the length of a specific sample as also with decreasing growth rates in different samples. The Y2O3 particles in samples exposed for longer time to the liquid phase at high temperatures exhibited coarsening and unidirectional coalescence into a rodlike morphology and retained their morphology even in the 211 matrix after solidification.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Shiohara, Y. and Endo, A., Mater. Sci. Eng. R19, 1 (1997).CrossRefGoogle Scholar
2.Cima, M.J., Flemings, M.C., Figueredo, A.M., Nakade, M., Ishii, H., Brody, H.D., and Haggerty, J.S., J. Appl. Phys. 72, 1 (1998).Google Scholar
3.Shen, H., Flemings, M.C., Cima, M.J., Haggerty, J., Honjo, S., Rigby, K., and Sung, T.H., J. Mater. Res. 13, 565 (1998).CrossRefGoogle Scholar
4.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar
5.Namamura, Y. and Shiohara, Y., J. Mater. Res. 11, 2450 (1996).CrossRefGoogle Scholar
6.Izumi, T. and Shiohara, Y., J. Mater. Res. 7, 16 (1992).CrossRefGoogle Scholar
7.Sumida, M., Nakamura, Y., Shiohara, Y., and Umeda, T., J. Mater. Res. 12, 1979 (1997).CrossRefGoogle Scholar
8.Sumida, M., Matsuoka, S., Shiohara, Y., and Umeda, T., J. Mater. Res. 13, 2807 (1998).CrossRefGoogle Scholar
9.Yao, X., Furuya, K., Nakamura, Y., Wen, J., Endoh, A., Sumida, M., and Shiohara, Y., J. Mater. Res. 10, 3003 (1995).CrossRefGoogle Scholar
10.Figueredo, A., Cima, M., Flemings, M., and Haggerty, J., Metall. Mater. Trans. A 25A, 1747 (1994).CrossRefGoogle Scholar
11.Schmitz, G.J., Laakman, J., Wolters, Ch., Rex, S., Gawalek, W., Habisreuther, T., Bruchlos, G., and Görnert, P., J. Mater. Res. 8, 2774 (1993).CrossRefGoogle Scholar
12.Bateman, C.A., Xhang, L., Chan, H.M., and Harmer, M.P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
13.Honjo, S., Cima, M.J., Flemings, M.C., Ohkuma, T., Shen, H., and Rigby, K., J. Mater. Res. 12, 880 (1997).CrossRefGoogle Scholar
14.Jin, S., Tiefel, T.H., Sherwood, R.C., Vandover, R.B., Davis, M.E., Kammlott, G.W., and Fastnacht, R.A., Phys. Rev. B 28, 1189 (1989).Google Scholar
15.Salama, K. and Lee, D.F., Supercond. Sci. Technol. 7, 177 (1994).CrossRefGoogle Scholar
16.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
17.Tretyakov, Y.D. and Goodilin, E.A., Russ. Chem. Rev. 69 (1), 1 (2000).CrossRefGoogle Scholar
18.Sudhakar Reddy, E. and Rajasekharan, T., Supercond. Sci. Tech. 11, 523 (1998).CrossRefGoogle Scholar
19.Varanasi, C., McGinn, P.J., Pavate, V., and Kvan, E.P., Physica C 221, 565 (1994).CrossRefGoogle Scholar
20.Picard, P.G., Chaud, X., Beaugnon, E., Erruad, A., and Tournier, R., Mater. Sci. Eng. B 53, 66 (1998).CrossRefGoogle Scholar
21.Griffith, M.L., Halloran, J.W., and Huffman, R.T., J. Mater. Res. 9, 1633 (1994).CrossRefGoogle Scholar
22.Sudhakar Reddy, E., J. Mater. Research (unpublished).Google Scholar
23.Wolters, Ch., Zeimetz, B., Weiss, H., Hashagen, U., and Schmitz, G.J., Proc. ICMAS-92, edited by Chu, C.W. and Fink, J. (Gournay sur Marne: IITT-International, Paris, 1992), pp. 9397.Google Scholar
24.Schmitz, G.J., Doctoral Thesis, RWTH University, Aachen, Germany (1991).Google Scholar
25.The Basics of Quantitative Metallography, edited by Pickering, F.B. (Institute of Metallurgical Technicians, Monographs No. 1 1984).Google Scholar
26.St. John, D.H., Acta Metall. 38, 631 (1980).CrossRefGoogle Scholar
27.Spittle, J.A., J. Inst. Metals 9, 124 (1970).Google Scholar
28.St. John, D.H. and Hogan, L.M., J. Mater. Sci. 17, 2413 (1982).CrossRefGoogle Scholar
29.Fredricksson, H. and Nylen, T., Metal. Sci. 16, 283 (1982).CrossRefGoogle Scholar
30.Terborg, R. and Schmitz, G.J., J. Mater. Res. 12, 2002 (1997).CrossRefGoogle Scholar
31.Spittle, J.A., J.Inst. Metals 98, 124 (1990).Google Scholar
32.Maeda, J. and Shiohara, Y., J. Mater. Res. 14, 2739 (1999).CrossRefGoogle Scholar
33.Cahn, J.W., Met. Trans. AIME 10A, 119 (1979).CrossRefGoogle Scholar
34.Sudhakar Reddy, E. and Rajasekharan, T., Mater. Lett. 35, 62 (1998).CrossRefGoogle Scholar
35.Hillert, M. and Uhrenius, B., Scand. J. Metall. 1, 223 (1972).Google Scholar
36.Boettinger, W.J., Coriell, S.R., Greer, A.L., Karma, A., Kurz, W., Rappaz, M., and Trivedi, R., Acta Mater. 48, 43 (2000).CrossRefGoogle Scholar
37.Figueredo, A., Cima, M., Flemings, M.C., and Haggerty, J., Metall. Mater. Trans. A 25A, 1747 (1994).CrossRefGoogle Scholar
38.Busse, P. and Meissen, F., Scripta Mater. 36, 653 (1997).CrossRefGoogle Scholar
39.Meißen, F., Diploma Thesis, RWTH University, Aachen, Germany (1996).Google Scholar
40.Fuh, B.C., Doctoral Thesis, Iowa State University, Iowa (1984).Google Scholar
41.Sudhakar Reddy, E. and Rajasekharan, T., J. Mater. Res. 13, 1828 (1998).CrossRefGoogle Scholar
42.Kim, C-J., Kim, K-B., Chang, I-S., Won, D-Y., Moon, H-C., and Suhr, D-S., J. Mater. Res. 8, 699 (1993).CrossRefGoogle Scholar
43.Goyal, A., Funkenbusch, F.D., Kroeger, D.M., and Burns, S.J., Physica C 182, 203 (1991).CrossRefGoogle Scholar
44.Diko, P., Gawalek, W., Habisreuther, T., Klupsch, T., and Görnert, P., Phys. Rev. B 52, 13658 (1995).CrossRefGoogle Scholar
45.Sudhakar Reddy, E. and Rajasekharan, T., Physica C 279, 56 (1997).CrossRefGoogle Scholar
46.Sudhakar Reddy, E. and Rajasekharan, T., Phys. Rev. B 57, 5079 (1998).CrossRefGoogle Scholar
47.Müller, D. and Freyhardt, H.C., Physica C 242, 283 (1995).CrossRefGoogle Scholar
48.Alexander, K.B., Goyal, A., Kroeger, D.M., Selvamanickam, V., and Salama, K., Phys. Rev. B 45, 5622 (1992).CrossRefGoogle Scholar
49.Wong-Ng, W. and Cook, L.P., J. Res. Natl. Stan. 103, 379 (1998).CrossRefGoogle Scholar
50.Karen, P., Braaten, O., and Kjekshus, A., Acta Chem. Scandinavica 52, 805 (1992).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Directional solidification and microstructural studies of the peritectic Y2BaCuO5 phase
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Directional solidification and microstructural studies of the peritectic Y2BaCuO5 phase
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Directional solidification and microstructural studies of the peritectic Y2BaCuO5 phase
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *