Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-14T18:36:43.021Z Has data issue: false hasContentIssue false

Dehydrogenation/rehydrogenation mechanism in aluminum destabilized lithium borohydride

Published online by Cambridge University Press:  31 January 2011

Xuebin Yu*
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, China; Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522, Australia; and CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, Mayfield West, NSW 2304, Australia
Guanglin Xia
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, China
Huakun Liu
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522, Australia; and CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, Mayfield West, NSW 2304, Australia
*
a) Address all correspondence to this author. e-mail: yuxuebin@fudan.edu.cn
Get access

Abstract

LiBH4/Al mixtures with various mol ratios were prepared by ball milling. The hydrogen storage properties of the mixtures were evaluated by differential scanning calorimetry/thermogravimetry analyses coupled with mass spectrometry measurements. The phase compositions and chemical state of elements for the LiBH4/Al mixtures before and after hydrogen desorption and absorption reactions were assessed via powder x-ray diffraction, infrared spectroscopy, and x-ray photoelectron spectroscopy. Dehydrogenation results revealed that LiBH4 could react with Al to form AlB2 and AlLi compounds with a two-step decomposition, resulting in improved dehydrogenation. The rehydrogenation experiments were investigated at 600 °C with various H2 pressure. It was found that intermediate hydride was formed firstly at a low H2 pressure of 30 atm, while LiBH4 could be reformed completely after increasing the pressure to 100 atm. Absorption/desorption cycle results showed that the dehydrogenation temperature increased and the hydrogen capacity degraded with the increase of cycle numbers.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Schlapbach, L. and Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).CrossRefGoogle ScholarPubMed
2Grochala, W. and Edwards, P.P.: Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem. Rev. 104, 1283 (2004).CrossRefGoogle ScholarPubMed
3Bogdanovic, B., Felderhoff, M., Kaskel, S., Pommerin, A., Schlichte, K., and Schüth, F.: Improved hydrogen storage properties of Ti-doped sodium atlante using titanium nanoparticles as doping agents. Adv. Mater. 15, 1012 (2003).CrossRefGoogle Scholar
4Balde, C.P., Hereijgers, B.P.C., Bitter, J.H., and Jong, K.P.: Facilitated hydrogen storage in NaAlH4 supported on carbon nonfibers. Angew. Chem. Int. Ed. 45, 3501 (2006).CrossRefGoogle Scholar
5Bogdanovic, B., Felderhoff, M., Pommerin, A., Schuth, T., and Spielkamp, N.: Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv. Mater. 18, 1198 (2006).CrossRefGoogle Scholar
6Chen, P., Xiong, Z., Lou, J., Lin, J., and Tan, K.L.: Interaction of hydrogen with metal nitrides and imides. Nature 420, 302 (2002).CrossRefGoogle ScholarPubMed
7Xiong, Z.T., Wu, G.T., Hu, H.J., and Chen, P.: Ternary imides for hydrogen storage. Adv. Mater. 16, 1522 (2004).CrossRefGoogle Scholar
8Zhang, C.J. and Alavi, A.: A first-principles investigation of LiNH2 as a hydrogen-storage material: Effects of substitutions of K and Mg for Li. J. Phys. Chem. B 110, 7139 (2006).CrossRefGoogle ScholarPubMed
9Orimo, S.I., Nakamori, Y., Ohba, N., Miwa, K., Aoki, M., Towata, S., and Zuttel, A.: Experimental studies on intermediate compound of LiBH4. Appl. Phys. Lett. 89, 021920 (2006).CrossRefGoogle Scholar
10Herbst, J.F. and Hector, L.G.: Electronic structure and energetics of the quaternary hydride Li4BN3H10. Appl. Phys. Lett. 88, 231904 (2006).CrossRefGoogle Scholar
11Orimo, S., Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Towata, S., and Zuttel, A.: Dehydriding and rehydriding reactions of LiBH4. J. Alloys Compd. 404, 427 (2005).CrossRefGoogle Scholar
12Filinchuk, Y.E., Yvon, K., Meisner, G.P., Pinkerton, F.E., and Balogh, M.P.: On the composition and crystal structure of the new quaternary hydride phase Li4BN3H10. Inorg. Chem. 45, 1433 (2006).CrossRefGoogle ScholarPubMed
13Barkhordarian, G., Jensen, T.R., Doppiu, S., Bösenberg, U., Borgschulte, A., Gremaud, R., Cerenius, Y., Dornheim, M., Klassen, T., and Bormann, R.: Formation of Ca(BH4)2 from hydrogenation of CaH2 + MgB2 composite. J. Phys. Chem. B 112, 2743 (2008).Google Scholar
14Züttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, Ph., and Emmenegger, Ch.: LiBH4–A new hydrogen storage material. J. Power Sources 118, 1 (2003).CrossRefGoogle Scholar
15Pinkerton, F.E., Meisner, G.P., Meyer, M.S., Balogh, M.P., and Kundrat, M.D.: Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. J. Phys. Chem. B 109, 6 (2005).CrossRefGoogle ScholarPubMed
16Vajo, J.J., Skeith, S.L., and Mertens, F.: Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 109, 3719 (2005).CrossRefGoogle ScholarPubMed
17Yu, X.B., Grant, D.M., and Walker, G.S.: A new dehydrogenation mechanism for reversible multicomponent borohydride systems–The role of Li–Mg alloys. Chem. Commun. 37, 3906 (2006).CrossRefGoogle Scholar
18Bösenberg, U., Doppiu, S., Mosegaard, L., Barkhordarian, G., Eigen, N., Borgschulte, A., Jensen, T.R., Cerenius, Y., Gutfleisch, O., Klassen, T., Dornheim, M., and Bormann, R.: Hydrogen sorption properties of MgH2–LiBH4 composites. Acta Mater. 55, 3951 (2007).CrossRefGoogle Scholar
19Au, M., Jurgensen, A., and Zeigler, K.: Modified lithium borohydrides for reversible hydrogen storage (2). J. Phys. Chem. B 110, 26482 (2006).CrossRefGoogle ScholarPubMed
20Yang, J., Sudik, A., and Wolverton, C.: Destabilizing LiBH4 with a metal (M = Mg, Al, Ti, V, Cr, or Sc) or metal hydride (MH2 =MgH2, TiH2, or CaH2). J. Phys. Chem. C 111, 19134 (2007).Google Scholar
21Kang, X.D., Wang, P., Ma, L.P., and Cheng, H.M.: Reversible hydrogen storage in LiBH4 destabilized by milling with Al. Appl. Phys. A 89, 963 (2007).CrossRefGoogle Scholar
22Siegel, D.J., Wolverton, C., and Ozolins, V.: Thermodynamic guidelines for the prediction of hydrogen storage reactions and their application to destabilized hydride mixtures.Phys. Rev. B 76, 134102 (2007).CrossRefGoogle Scholar
23Vajo, J.J., Salguero, T.T., Gross, A.F., Skeith, S.L., and Olson, G.L.: Thermodynamic destabilization and reaction kinetics in light metal hydride systems. J. Alloys Compd. 446, 409 (2007).CrossRefGoogle Scholar
24Alapati, S.V., Johnson, J.K., and Scholl, D.S.: Identification of destabilized metal hydrides for hydrogen storage using first-principles calculations. J. Phys. Chem. B 110, 8769 (2006).CrossRefGoogle ScholarPubMed
25Mauron, P., Buchter, F., Friedrichs, O., Remhof, A., Bielmann, M., Zwicky, C.N., and Züttel, A.: Stability and reversibility of LiBH4. J. Phys. Chem. B 112, 906 (2008).CrossRefGoogle ScholarPubMed