Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-19T18:56:16.105Z Has data issue: false hasContentIssue false

Conventional and microwave sintering studies of SrTiO3

Published online by Cambridge University Press:  03 March 2011

Horng-Yi Chang
Affiliation:
Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China
Kuo-Shung Liu
Affiliation:
Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China
I-Nan Lin
Affiliation:
Materials Science Center, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China
Get access

Abstract

Using the nonconventional sintering technique, such as microwave sintering, it is observed to enhance the densification rate of SrTiO3 materials as effectively as employing the highly active powders prepared by the chemical route. Although the chemically derived powders demonstrate better sinterability than the mixed oxide powders, the thermal analysis indicates that the segregation of Ti4+-containing clusters during decomposition of precursors in the direct pyrolysis (DP) process induces the occurrence of TiO2 particles (anatase phase) prior to the formation of SrTiO3 phase. These particles retard the necking process required to sinter the materials. The spray pyrolysis (SP) process can circumvent the preferential nucleation of TiO2 phase and, therefore, produce powders exhibiting superior sintering behavior to the DP-derived powders. The microwave sintering technique, on the other hand, substantially enhances the rate of diffusion of the ions in the materials such that even the mixed oxide powders can be sintered at a temperature about 200 °C lower than that needed to achieve the same density in a conventional sintering process. Fine grain (∼4 μm) microstructure is obtained for the materials microwave sintered at 1220 °C for 10 min. The migration of grain boundaries requires higher temperature to initiate than the formation of neckings between the grains. The grain growth occurs only when the material was sintered at temperatures higher than 1250 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Okazaki, A., Soejima, Y., Ohama, N., and Muller, K. A., Jpn. J. Appl. Phys. Suppl. 24-2, 257 (1985).CrossRefGoogle Scholar
2Kahn, M., Burks, D. P., Burn, I., and Schulze, W. A., in Electronic Ceramics–Properties, Devices and Applications, edited by Levinson, L. M. (Marcell Dekker, Inc., New York, 1988), p. 191.Google Scholar
3Yamamoto, H. and Fujiwara, S., Ceramics 20(6), 488 (1985).Google Scholar
4Fujimoto, M. and Kingery, W. D., J. Am. Ceram. Soc. 68(4), 169 (1985).CrossRefGoogle Scholar
5Wernicke, R., in Advances in Ceramics, Vol. 1, Grain Boundary Phenomenon in Electronic Ceramics, edited by Levinson, L. M. (American Ceramics Society, Westerville, OH, 1981), p. 261.Google Scholar
6Correia, A. M. S. and Baptista, J. L., Mater. Sci. Eng. A109, 183 (1989).CrossRefGoogle Scholar
7Kaino, D., Funayama, J., and Yamaoka, N., Jpn. J. Appl. Phys. Suppl. 24–3, 120 (1985).CrossRefGoogle Scholar
8Varma, H. K., Pillai, P. K., Sreekumax, M. M., Warrier, K. G. K., and Damodaran, A. D., Br. Ceram. Trans. J. 90, 189 (1991).Google Scholar
9Yahagi, M. and Hashimoto, T., Electron. Ceram. 19, 39 (1988).Google Scholar
10Smith, J. S. II, Dolloff, R. T., and Mazdiyasni, K. S., J. Am. Ceram. Soc. 53(2), 91 (1970).CrossRefGoogle Scholar
11Kasai, T., Ozaki, Y., and Yamamoto, S., Yogyo-Kyokai-Shi 95(10), 68 (1987).Google Scholar
12Diaz-Guemes, M. I., Carreno, T. G., Serna, C. J., and Palacios, J. M., J. Mater. Sci. 24, 1011 (1989).CrossRefGoogle Scholar
13Potdar, H. S., Deshpande, S. B., Godbole, P. D., Gunjikar, V. G., and Date, S. K., J. Mater. Res. 7, 429 (1992).Google Scholar
14Sakurai, O., Mizutani, N., and Kato, M., Yogyo-Kyokai-Shi 94(8), 117 (1986).Google Scholar
15Pechini, M. P., U.S. Patent No. 3330697, July 11, 1967.Google Scholar
16Ho, J. C., Liu, K. S., and Lin, I. N., J. Mater. Sci. 28, 4497 (1993).CrossRefGoogle Scholar
17Chan, N-H., Sharma, R. K., and Smyth, D.M., J. Electrochem. Soc. 128(8), 1762 (1981).CrossRefGoogle Scholar
18Balachandran, U. and Eror, N. G., J. Solid State Chem. 39, 351 (1981).CrossRefGoogle Scholar
19Witeck, S., Smyth, D. M., and Pickup, H., J. Am. Ceram. Soc. 67(5), 372 (1984).CrossRefGoogle Scholar
20Janney, M. A. and Kimrey, H. D., in Microwave Processing of Materials II, edited by Snyder, W.B. Jr., Sutton, W. H., Iskander, M. F., and Johnson, D. L. (Mater. Res. Soc. Symp. Proc. 189, Pittsburgh, PA, 1991), p. 215.Google Scholar
21Katz, J. D., Blake, R. D., and Kenkre, V. M., Ceram. Trans. 21, 95 (1991).Google Scholar
22Reed-Hill, R. E., Physical Metallurgy Principles, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, 1973), Chap. 10, p. 378.Google Scholar