Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-21T04:42:02.929Z Has data issue: false hasContentIssue false

Compensation phenomena in oil-resin mixtures: A new dielectric approach to percolative processes

Published online by Cambridge University Press:  31 January 2011

O. Pagés
Affiliation:
Institut de Physique-Electronique et Chimie, Université de Metz, 1Bd Arago, 57078 Metz Cedex 3, France and Department of Chemistry, Birkbeck College, 29 Gordon Square, W21TT London, United Kingdom
A. Lamure
Affiliation:
Groupe Polymères et Composites, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex, France
C. Lacabanne
Affiliation:
Groupe Polymères et Composites, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex, France
M. Odlyha
Affiliation:
Department of Chemistry, Birkbeck College, 29 Gordon Square, W21TT London, United Kingdom
D. Craig
Affiliation:
The School of Pharmacy, 21/39 Brunswick Square, London WC1N 1AX, United Kingdom
Get access

Abstract

The methods of thermally stimulated currents (TSC) together with low frequency dielectric spectroscopy (LFDS) are combined for the first time to study percolation phenomena. These take place within oil-resin mixtures which constitute conductor/insulator-like composite systems. Each of these techniques is shown to describe selectively one of two different kinds of relaxation processes in the oil component: first, anelastic dipolar movements and second, the circulation of free charges. The separate qualitative interpretations of the combined TSC/LFDS experiments lead to convergent estimations of the percolation thresholds of the two basic materials in oil-resin mixtures. The latter appear as critical concentrations for which the dielectric relaxation processes either comply suddenly with compensation laws or pre-existing compensation phenomena change in nature.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Stauffer, D., Introduction to Percolation Theory (Taylor and Francis, London, 1985), p. 87.CrossRefGoogle Scholar
2.Stauffer, D., Phys. Rep. 54, 3 (1979).CrossRefGoogle Scholar
3.Zallen, R., The Physics of Amorphous Solids (Wiley-Interscience, New York, 1983), p. 245.CrossRefGoogle Scholar
4.Straley, J. P., in Electrical Transport and Optical Properties of Inhomogeneous Media, edited by Garland, J. C. and Tanner, D. B., Proceed. no. 1, New York, 1978.Google Scholar
5.Bendler, J. T. and Shlesinger, M. F., Macromolecules 18, 591 (1985).CrossRefGoogle Scholar
6.Boned, C., Peyrelasse, J., and Saidi, Z., Phys. Rev. E 47, 1, 468 (1993).CrossRefGoogle Scholar
7.Deutscher, G., Kapitulnik, A., and Rappaport, M. L., in Percolation Structures and Processes, edited by Deutscher, G., Zallen, R., and Adler, J., Annals of the Israel Physical Society, Vol. 5, Haifa, 1983.Google Scholar
8.Smith, L. N. and Lobb, C. J., Phys. Rev. B 20, 3653 (1979).CrossRefGoogle Scholar
9.Hsu, W. Y., Giri, M. R., and Ikeda, R., Macromolecules 15, 1210 (1982).CrossRefGoogle Scholar
10.Hsu, W. Y., Giri, M. R., and Ikeda, R., Macromolecules 16, 1947 (1983).Google Scholar
11.Hsu, W. Y., Barkley, J. R., and Meakin, P., Macromolecules 13, 198 (1980).CrossRefGoogle Scholar
12.Toulouse, G. and Pfeuty, P., Introduction au Groupe de Renormalisation et à ses Applications (Presses Universitaires de Grenoble, Grenoble, 1975).Google Scholar
13.Yeomans, J. M., Statistical Mechanics of Phase Transitions (Clarendon Press, Oxford, 1992).CrossRefGoogle Scholar
14.Bergman, D. J., Phys. Rep. 43, 378 (1978).CrossRefGoogle Scholar
15.Grannan, D. M., Garland, J. C., and Tanner, D. B., Phys. Rev. Lett. 46, 375 (1981).CrossRefGoogle Scholar
16.Song, Y., Noh, T. W., Lee, S., and Gaines, J. R., Phys. Rev. B 2, 904 (1986).CrossRefGoogle Scholar
17.Last, B. P. and Thouless, D. J., Phys. Rev. Lett. 27, 1719 (1971).CrossRefGoogle Scholar
18.Chen, S. H., Rouch, J., Sciortino, F., and Tartaglia, P., J. Phys. : Condens. Matter 6, 10855 (1994).Google Scholar
19.Mills, J. S. and White, R., Organic Chemistry of Museum Objects (Butterworths, London, 1986).Google Scholar
20.McNaughton, J. L. and Mortimer, C. T., IRS, Physical Chemistry (Butterworths, Series 2, 10, London, 1975).Google Scholar
21.Barrall, E. M. and Johnson, J. F., Tech. Methods Polymer Eval. 2, 1 (1970).Google Scholar
22.Lacabanne, C., Ph.D. Thesis, University of Toulouse, France, 1974.Google Scholar
23.Chatain, D., Ph.D. Thesis, University of Toulouse, France, 1974.Google Scholar
24.Dufresnes, A., Ph.D. Thesis, University of Toulouse, France, 1990.Google Scholar
25.Monpagens, J. C., Chatain, D., Lacabanne, C., and Gautier, P. G., J. Polym. Sci. Phys. 15, 767 (1977).CrossRefGoogle Scholar
26.Monpagens, J. C., Chatain, D., Lacabanne, C., and Gautier, P. G., Solid State Commun. 18, 1611 (1976).CrossRefGoogle Scholar
27.McCrum, M. G., Polymer 25, 299 (1984).CrossRefGoogle Scholar
28.Lacabanne, C., Chatain, D., and Monpagens, J. C., J. Macromolecular Sci. Phys. B13, 4, 357 (1977).Google Scholar
29.Cole, K. S. and Cole, R. H., J. Chem. Phys. 9, 341 (1941).CrossRefGoogle Scholar
30.Fuoss, R. M. and Kirkwood, J. G., J. Am. Chem. Soc. 63, 385 (1941).CrossRefGoogle Scholar
31.Debye, P., Polar Molecules (Dover Press, New York, 1945).Google Scholar
32.Fröhlich, H., Theory of Dielectrics (Oxford University Press, London, 1958).Google Scholar
33.Davidson, D. W. and Cole, R. H., J. Chem. Phys. 19, 1484 (1951).CrossRefGoogle Scholar
34.Dissado, L. A. and Hill, R. M., Nature 279, 685 (1979).CrossRefGoogle Scholar
35.Jonscher, A. K., Physics of Dielectric Solids, Institute of Physics Conference, Series 59, 1981.Google Scholar
36.McGlinchey, C. W., Materials Research Society, Spring 1990.Google Scholar
37.Goswani, D. N., J. Oil Col. Chem. Assoc. 63, 101 (1980).Google Scholar
38.Bucci, C. and Fieschi, R., Phys. Rev. Lett. 1, 16 (1964).CrossRefGoogle Scholar
39.Bucci, C., Fieschi, R., and Guidi, R., Phys. Rev. 2, 816 (1966).CrossRefGoogle Scholar
40.Hoffman, J. D., Williams, G., and Passaglia, E., J. Polym. Sci. C 14, 173 (1966).Google Scholar
41.Pagés, O., Grimau, M., Lamure, A., Legendre, B., Zaoui, A., and Certier, M., unpublished.Google Scholar