Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-kfd6t Total loading time: 0.405 Render date: 2022-10-07T23:33:28.496Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Calculation of dielectric polarizabilities of perovskite substrate materials for high-temperature superconductors

Published online by Cambridge University Press:  03 March 2011

V.J. Fratello
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-0636
C.D. Brandle
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974-0636
Get access

Abstract

Dielectric polarizabilities for most of the ions in known perovskites scale with the ionic volume and the valence. These ionic dielectric polarizabilities and the ion additivity rule have been used to calculate molecular dielectric polarizabilities for perovskite substrate materials used for high-temperature superconductors. Using the ion additivity rule to predict possible low permittivity compositions seems to suggest that the constraints of the perovskite structure and stoichiometry, lattice match to high-temperature superconductors, and congruent melting required for bulk growth limit the compositions to ones unlikely to be superior to the currently available materials. The most limiting factor on the relative permittivity of the perovskites is probably the close-packed nature and lack of voids in the structure. However, in nonferroelectric perovskites, the polarizabilities derived from relative permittivity data using the Clausius-Mossotti relation are significantly less than the calculated values, with deviations that correlate with degree of cation compression. Use of cation compression to reduce the polarizability shows some promise for improving dielectric constants.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Talvacchio, J. and Wagner, G. R., SPIE Proc. 1292, 2 (1990).CrossRefGoogle Scholar
2Konaka, T., Sato, M., Asano, H., and Kubo, S., J. Superconductivity 4, 283 (1991).CrossRefGoogle Scholar
3Shannon, R. D. and Subramanian, M. A., Phys. Chem. Minerals 16, 747 (1989).CrossRefGoogle Scholar
4Subramanian, M. A., Shannon, R. D., Chai, B. H. T., Abraham, M. M., and Wintersgill, M. C., Phys. Chem. Minerals 16, 741 (1989).CrossRefGoogle Scholar
5Shannon, R. D., Subramanian, M. A., Mariano, A. N., and Rossman, G. R., in Materials for Magneto-Optic Data Storage, edited by Robinson, C. J., Suzuki, T., and Falco, C. M. (Mater. Res. Soc. Symp. Proc. 150, Pittsburgh, PA, 1989), p. 197.Google Scholar
6Subramanian, M. A. and Shannon, R. D., Mater. Res. Bull. XXIV, 1477 (1989).CrossRefGoogle Scholar
7Shannon, R. D., Subramanian, M. A., Allik, T. H., Kimura, H., Kokta, M. R., Randies, M. H., and Rossman, G. R., J. Appl. Phys. 67, 3798 (1990).CrossRefGoogle Scholar
8Shannon, R. D., NIST Special Publication 804, Chemistry of Electronic Materials, edited by Davies, P. K. and Roth, R. S. (1991), p. 457.Google Scholar
9Shannon, R. D., Subramanian, M. A., Hosoya, S., and Rossman, G. R., Phys. Chem. Minerals 18, 1 (1991).CrossRefGoogle Scholar
10Shannon, R. D., Oswald, R. A., Allik, T. H., Damen, J. P. M., Mateika, D., Wechsler, B. A., and Rossman, G. R., J. Solid State Chem. 95, 313 (1991).CrossRefGoogle Scholar
11Shannon, R. D. and Rossman, G. R., Am. Mineral. 77, 94 (1992).Google Scholar
12Shannon, R. D., Subramanian, M. A., Mariano, A. N., Gier, T. E., and Rossman, G. R., Am. Mineral. 77, 101 (1992).Google Scholar
13Shannon, R. D., Dickinson, J. E., and Rossman, G. R., Phys. Chem. Minerals 19, 148 (1992).Google Scholar
14Shannon, R. D. and Rossman, G. R., Phys. Chem. Minerals 19, 157 (1992).Google Scholar
15Shannon, R. D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
16Grimes, N. W., J. Phys.: Condens. Matter 4, L567 (1992).Google Scholar
17Shannon, R. D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
18Goldschmidt, V. M., Skrifter Norske Videnskaps-Akad. Mat. Naturvid. Kl (1928).Google Scholar
19Keith, M. L. and Roy, R., Am. Mineral. 39, 1 (1954).Google Scholar
20Roth, R. S., J. Res. Natl. Bur. Stand. 58, 75 (1957).CrossRefGoogle Scholar
21Brandle, C. D. and Fratello, V. J., J. Mater. Res. 5, 2160 (1990).CrossRefGoogle Scholar
22Heydweiller, A., Z. Phys. 3, 308 (1920).CrossRefGoogle Scholar
23Cheng, C. K., Philos. Mag. 30, 505 (1940).CrossRefGoogle Scholar
24Jonker, G. H. and van Santen, J. H., Chem. Weekbl. 43, 672 (1947).Google Scholar
25Roberts, S., Phys. Rev. 76, 1215 (1949).CrossRefGoogle Scholar
26Roberts, S., Phys. Rev. 77, 258 (1950).CrossRefGoogle Scholar
27Roberts, S., Phys. Rev. 81, 865 (1951).CrossRefGoogle Scholar
28Tessman, J. R., Kahn, A. H., and Shockley, W., Phys. Rev. 92, 890 (1953).CrossRefGoogle Scholar
29Pirenne, J. and Kartheuser, E., Physica 30, 2005 (1964).CrossRefGoogle Scholar
30Boswarva, I. M., Phys. Rev. B 1, 1698 (1970).CrossRefGoogle Scholar
31Wilson, J. N. and Curtis, R. M., J. Phys. Chem. 74, 187 (1970).CrossRefGoogle Scholar
32Coker, H., J. Phys. Chem. 80, 2078 (1976).CrossRefGoogle Scholar
33Claro, F. H., Phys. Rev. B 18, 7058 (1978).CrossRefGoogle Scholar
34Lasaga, A. C. and Cygan, R. T., Am. Mineral. 67, 328 (1982).Google Scholar
35Cross, L. E., Fouskova, A., and Cummins, S. E., Phys. Rev. Lett. 21, 812 (1968).CrossRefGoogle Scholar
36Keve, E. T., Abrahams, S. C, Nassau, K., and Glass, A. M., Solid State Commun. 8, 1517 (1970).CrossRefGoogle Scholar
37Nakamura, T., Kondo, T., and Kumada, A., Phys. Lett. 36A, 141 (1971).CrossRefGoogle Scholar
38Voronkova, V. I., Kozinskaya, T. G., and Yanovskii, V. K., Sov. Phys. Crystallogr. 23, 488 (1978).Google Scholar
39Brixner, L. H., Bierstedt, P. E., Sleight, A. W., and Licis, M. S., Mater. Res. Bull. VI, 545 (1971).CrossRefGoogle Scholar
40Barker, A. S. Jr., Phys. Rev. 135, A742 (1964).CrossRefGoogle Scholar
41Emmenegger, F. P. and Roetsch, H., J. Phys. Chem. Solids 32, 787 (1971).CrossRefGoogle Scholar
42Brower, W. S. Jr. and Fang, P. H., J. Appl. Phys. 41, 2266 (1970).CrossRefGoogle Scholar
43Brower, W. S. Jr. and Fang, P. H., J. Appl. Phys. 40, 4988 (1969).CrossRefGoogle Scholar
44Thorp, J. S. and Ammar, E. A. E., J. Mater. Sci. 10, 918 (1975).CrossRefGoogle Scholar
45Sandstrom, R. L., Giess, E. A., Gallagher, W. J., Segmuller, A., Cooper, E. I., Chisholm, M. F., Gupta, A., Shinde, S., and Laibowitz, R. B., Appl. Phys. Lett. 53, 1874 (1988).CrossRefGoogle Scholar
46Berkstresser, G. W., Valentino, A. J., and Brandle, C. D., J. Cryst. Growth 109, 457 (1991).CrossRefGoogle Scholar
47Konopka, J. and Wolff, I., IEEE Trans. Microwave Theory Tech. 40, 2418 (1992).CrossRefGoogle Scholar
48Giess, E. A., Sandstrom, R. L., Gallagher, W. J., Gupta, A., Shinde, S. L., Cook, R. F., Cooper, E. I., O'Sullivan, E. J. M., Roldan, J. M., Segmuller, A. P., and Angilello, J., IBM J. Res. Dev. 34, 916 (1990).CrossRefGoogle Scholar
49Westphal, W. B. and Sils, A., U. S. National Technical Information Service, AFML-TR-72-39 (1972).Google Scholar
50Berkstresser, G. W., Valentino, A. J., and Brandle, C. D., J. Cryst. Growth 109, 467 (1991).CrossRefGoogle Scholar
51Bovtun, V. P., Yanchevskaya, I. S., and Poplakov, Yu. M., Fix. Khim. Tverd. Tela, Conference Proceedings, edited by Venevtsev, Yu. N. and Lyubimove, V. N. (1982), p. 29.Google Scholar
52Simon, R. W., Lee, A. E., Platt, C. E., Daly, K. P., Luine, J. A., Eom, C. B., Rosenthal, P. A., Wu, X. D., and Venkatesan, T., in Science and Technology of Thin Film Superconductors, edited by McConnell, R. and Wolf, S. A. (Plenum, New York, 1989), p. 337.CrossRefGoogle Scholar
53Galasso, F. S., Perovskites and High Tc Superconductors (Gordon and Breach, New York, 1990), pp. 175179.Google Scholar
54Findikoglu, A. T., Doughty, C., Bhattacharya, S., Li, Q., Xi, X. X., Venkatesan, T., Fahey, R. E., Strauss, A. J., and Phillips, J. M., Appl. Phys. Lett. 61, 1718 (1992).CrossRefGoogle Scholar
55Findikoglu, A. T., Bhattacharya, S., Doughty, C., Pambianchi, M. S., Li, Q., Xi, X. X., Aulage, S. M., Fahey, R. E., Strauss, A. J., Phillips, J. M., and Venkatesan, T., IEEE Trans. Appl. Superconductivity 3, 1425 (1993).CrossRefGoogle Scholar
56Guo, R., Sheen, J., Bhalla, A. S., Ainger, F. W., Subbarao, E. C, and Cross, L. E., Defense Advanced Research Projects Agency/Office of Naval Research Workshop on Substrate Materials for High Tc Superconductors, Williamsburg, VA, February 57, 1992.Google Scholar
57Antonov, V. A., Arsen'ev, P. A., Bagdasarov, Kh. S., Evdokimov, A. A., Kopylova, K. K., and Tadzhi-Agleev, Kh. G., Inorg. Mater. 22, 401 (1986); English translation of Izv. Akad. Nauk SSSR, Neorg. Mater. 22, 466 (1986).Google Scholar
58Araki, K., Iwasa, I., Kobayashi, Y., Nagata, S., and Morisue, M., IEEE Trans. Magn. 25, 980 (1989).CrossRefGoogle Scholar
59Gorshunov, B. P., Kozlov, G. V., Krasnosvobodtsev, S. I., Pechen, E. V., Prokhorov, A. M., Prokhorov, A. S., Syrotynsky, O. I., and Volkov, A. A., Physica C 153–155, 667 (1988).CrossRefGoogle Scholar
60Shannon, R. D., Oswald, R. A., Parise, J. B., Chai, B. H. T., Bysewski, P., and Pajaczkowska, A., J. Solid State Chem. 98, 90 (1992).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Calculation of dielectric polarizabilities of perovskite substrate materials for high-temperature superconductors
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Calculation of dielectric polarizabilities of perovskite substrate materials for high-temperature superconductors
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Calculation of dielectric polarizabilities of perovskite substrate materials for high-temperature superconductors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *