Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-07T05:02:39.640Z Has data issue: false hasContentIssue false

Cadmium- and indium-doped zinc oxide by combustion synthesis using dopant chloride precursors

Published online by Cambridge University Press:  03 March 2011

G. Yogeeswaran
Affiliation:
Materials Science and Engineering Program, The University of Texas, Arlington, Texas 76019-0065
C.R. Chenthamarakshan
Affiliation:
Center for Renewable Energy Science and Technology, Department of Chemistry and Biochemistry, The University of Texas, Arlington, Texas 76019-0065
N.R. de Tacconi
Affiliation:
Center for Renewable Energy Science and Technology, Department of Chemistry and Biochemistry, The University of Texas, Arlington, Texas 76019-0065
K. Rajeshwar*
Affiliation:
Center for Renewable Energy Science and Technology, Department of Chemistry and Biochemistry, The University of Texas, Arlington, Texas 76019-0065
*
a) Address all correspondence to this author. e-mail: rajeshwar@uta.edu
Get access

Abstract

Cadmium-doped ZnO was prepared for the first time by combustion synthesis using CdCl2 as a dopant precursor, with zinc nitrate and urea as the combustion mixture. Unlike previous studies of combustion synthesis of ZnO in the presence of an indium nitrate precursor, which resulted in (ZnO)mIn2O3 (m = 3 or 4) compound formation, In-doped ZnO was prepared by combustion synthesis in this study using an InCl3 precursor. The doped samples were compared and contrasted with undoped ZnO using scanning electron microscopy, x-ray powder diffraction, energy-dispersive x-ray analyses, and x-ray photoelectron spectroscopy. Diffuse reflectance spectroscopy showed the optical band gap of ZnO to shrink from 3.14 to 3.07 eV and 3.02 eV on Cd and In doping, respectively. Finally, the doped samples showed an improved photoelectrochemical response relative to undoped ZnO over the wavelength range from ∼300 to ∼450 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Choi, Y-S., Lee, C-G., Cho, S.M.: Transparent conducting ZnxCd1-xO thin films prepared by the sol-gel process. Thin Solid Films 289, 153 (1996).CrossRefGoogle Scholar
2.Vigil, O., Cruz, F., Santana, G., Vaillant, L., Morales-Acevedo, A., Contreras-Puente, G.: Influence of post-thermal annealing on the properties of sprayed cadmium-zinc oxide thin films. Appl. Surf. Sci. 161, 27 (2000).CrossRefGoogle Scholar
3.Vigil, O., Vaillant, L., Cruz, F., Santana, G., Morales-Acevedo, A., Contreras-Puente, G.: Spray pyrolysis deposition of cadmium-zinc oxide thin films. Thin Solid Films 361–362, 53 (2000).CrossRefGoogle Scholar
4.Makino, T., Segawa, Y., Kawasaki, M., Ohtomo, A., Shiroki, R., Tamura, K., Yasuda, T., Koinuma, H.: Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films. Appl. Phys. Lett. 78, 1237 (2001).CrossRefGoogle Scholar
5.Tabet-Derraz, H., Benramdane, N., Nacer, D., Bouzidi, A., Medles, M.: Investigations on ZnxCd1-xO thin films obtained by spray pyrolysis. Sol. Energy Mater. Sol. Cells 73, 249 (2002).CrossRefGoogle Scholar
6.Sakurai, K., Takagi, T., Kubo, T., Kajita, D., Tanabe, T., Takasu, H., Fujita, S., Fujita, S.: Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy. J. Cryst. Growth 237–239, 514 (2002).CrossRefGoogle Scholar
7.Cruz-Gandarilla, F., Morales-Acevedo, A., Vigil, O., Hesiquio-Garduño, M., Vaillant, L., Contreras-Puente, G.: Micro-structural characterization of annealed cadmium-zinc oxide thin films obtained by spray pyrolysis. Mater. Chem. Phys. 78, 840 (2003).CrossRefGoogle Scholar
8.Ma, D.W., Ye, Z.Z., Huang, J.Y., Zhu, L.P., Zhao, B.H., He, J.H.: Effect of post-annealing treatments on the properties of Zn1−xCdxO films on glass substrates. Mater. Sci. Eng., B 111, 9 (2004).CrossRefGoogle Scholar
9.Wan, Q., Li, Q.H., Chen, Y.J., Wang, T.H., He, X.L., Gao, X.G., Li, J.P.: Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires. Appl. Phys. Lett. 84, 3085 (2004).CrossRefGoogle Scholar
10.Nakamura, A., Ishihara, J., Shigemori, S., Yamamoto, K., Aoki, T., Gotoh, H., Temmyo, J.: Zn1-xCdxO/ZnO heterostructures for visible light emitting devices. Jpn. J. Appl. Phys. 44 L4 (2005).CrossRefGoogle Scholar
11.Wang, F., He, H., Ye, Z., Zhu, L., Tang, H., Zhang, Y.: Raman scattering and photoluminescence of quasi-aligned ternary ZnCdO nanorods. J. Phys. D: Appl. Phys. 38, 2919 (2005).CrossRefGoogle Scholar
12.Yogeeswaran, G., Chenthamarakshan, C.R., Seshadri, A., de Tacconi, N.R., Rajeshwar, K.: Cathodic electrodeposition in the ternary Zn-Cd-O system: Mixed (ZnO)x(CdO)1-x film formation versus Cd-doping of ZnO films. Thin Solid Films, doi: 10.1016/j.tsf.2006.07.015.Google Scholar
13.Phillips, J.M., Cava, R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajewski, J.J., Marshall, J.H.Peck, W.F. Jr.Rapkine, D.H.: Zinc-indium-oxide: A high conductivity transparent conducting oxide. Appl. Phys. Lett. 67, 2246 (1995).CrossRefGoogle Scholar
14.Zhang, K., Zhu, F., Huan, C.H.A., Wee, A.T.S., Osipowicz, T.: Indium-doped zinc oxide films prepared by simultaneous r.f. and d.c. magnetron sputtering. Surf. Interface Anal. 28, 271 (1999).3.0.CO;2-1>CrossRefGoogle Scholar
15.Machado, G., Guerra, D.N., Leinen, D., Ramos-Barrado, J.R., Marotti, R.E., Dalchiele, E.A.: Indium-doped zinc oxide thin films obtained by electrodeposition. Thin Solid Films 490, 124 (2005).CrossRefGoogle Scholar
16.Kumar, P.M.R., Kartha, C.S., Vijayakumar, K.P., Abe, T., Kashiwaba, Y., Singh, F., Avasthi, D.K.: On the properties of indium doped ZnO thin films. Semicond. Sci. Technol. 20, 120 (2005).CrossRefGoogle Scholar
17.Kikkawa, S., Sasaki, H., Tamura, H., Hosokawa, S., Ogawa, H.: (ZnO)3In2O3 fine powder prepared by combustion reaction of nitrates-glycine mixture. Mater. Res. Bull. 39, 1821 (2004).Google Scholar
18.Kikkawa, S., Hosokawa, S., Ogawa, H.: Preparation of transparent conductive (ZnO)mIn2O3 fine powder by gel-combustion reaction. J. Am. Ceram. Soc. 88, 308 (2005).CrossRefGoogle Scholar
19.Manoharan, S.S., Patil, K.C.: Combustion synthesis of metal chromite powders. J. Am. Ceram. Soc. 75, 1012 (1992).CrossRefGoogle Scholar
20.Manoharan, S.S., Kumar, N.R.S., Patil, K.C.: Preparation of fine particle chromites: A combustion approach. Mater. Res. Bull. 25, 731 (1990).CrossRefGoogle Scholar
21.Rao, C.N.R.: Chemical synthesis of solid inorganic materials. Mater. Sci. Eng., B 18, 1 (1993).CrossRefGoogle Scholar
22.Fumo, D.A., Morelli, M.R., Segadães, A.M.: Combustion synthesis of calcium aluminates. Mater. Res. Bull. 31, 1243 (1996).CrossRefGoogle Scholar
23.Juárez, R.E., Lamas, D.G., Lascalea, G.E., Walsöe de Reca, N.E.: Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate-citrate combustion route. J. Eur. Ceram. Soc. 20, 133 (2000).CrossRefGoogle Scholar
24.Fumo, D.A., Jurado, J.R., Segadães, A.M., Frade, J.R.: Combustion synthesis of iron-substituted strontium titanate perovskites. Mater. Res. Bull. 32, 1459 (1997).CrossRefGoogle Scholar
25.Colomer, M.T., Fumo, D.A., Jurado, J.R., Segadães, A.M.: Non-stoichiometric La(1-x)NiO(3-δ) perovskites produced by combustion synthesis. J. Mater. Chem. 9, 2505 (1999).CrossRefGoogle Scholar
26.Cruz, L.P., Segadães, A.M., Rocha, J., Pedrosa de Jesus, J.D.: An easy way to Pb(Mg1/3Nb2/3)O3 synthesis. Mater. Res. Bull. 37, 1163 (2002).CrossRefGoogle Scholar
27.Fraigi, L.B., Lamas, D.G., Walsöe de Reca, N.E.: Comparison between two combustion routes for the synthesis of nanocrystalline SnO2 powders. Mater. Lett. 47, 262 (2001).CrossRefGoogle Scholar
28.Nagaveni, K., Hegde, M.S., Madras, G.: Structure and photocatalytic activity of Ti1-xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. J. Phys. Chem. B 108, 20204 (2004).CrossRefGoogle Scholar
29.Sousa, V.C., Morelli, M.R., Kiminami, R.H.G.A.: Combustion process in the synthesis of zinc oxide. Int. J. Self-Propag. High-Temp. Synth. 7, 327 (1998).Google Scholar
30.Sousa, V.C., Segadães, A.M., Morelli, M.R., Kiminami, R.H.G.A.: Combustion synthesized ZnO powders for varistor ceramics. Int. J. Inorg. Mater. 1, 235 (1999).CrossRefGoogle Scholar
31.de Sousa, V.C., Morelli, M.R., Kiminami, R.H.G.A., Castro, M.S.: Electrical properties of ZnO-based varistors prepared by combustion synthesis. J. Mater. Sci. -Mater. Electron. 13, 319 (2002).CrossRefGoogle Scholar
32.Hwang, C-C., Wu, T-Y.: Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method. Mater. Sci. Eng., B 111, 197 (2004).CrossRefGoogle Scholar
33.Hwang, C-C., Wu, T-Y.: Combustion synthesis of nanocrystalline ZnO powders using zinc nitrate and glycine as reactants-influence of reactant composition. J. Mater. Sci. 39, 6111 (2004).CrossRefGoogle Scholar
34.de Sousa, V.C., Morelli, M.R., Kiminami, R.H.G.A.: Combustion process in the synthesis of ZnO-Bi2O3. Ceram. Int. 26, 561 (2000).CrossRefGoogle Scholar
35.Gu, F., Wang, S.F., , M.K., Zhou, G.J., Xu, D., Yuan, D.R.: Structure evaluation and highly enhanced luminescence of Dy3+-doped ZnO nanocrystals by Li+ doping via combustion method. Langmuir 20, 3528 (2004).CrossRefGoogle Scholar
36.Jain, S.R., Adiga, K.C., Pai Verneker, V.R.: A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust. Flame 40, 71 (1981).CrossRefGoogle Scholar
37.Chen, X., Rajeshwar, K., Timmons, R.B., Chen, J-J., Chyan, O.M.R.: Pulsed plasma polymerization of tetramethyltin: Nanoscale compositional control of film chemistry. Chem. Mater. 8, 1067 (1996).CrossRefGoogle Scholar
38.Kasper, H.: New kind of phases with wurtzite-like structures in the system zinc oxide-indium oxide. Z. Anorg. Allg. Chem. 349, 113 (1967).CrossRefGoogle Scholar
39.Moriga, T., Edwards, D.D., Mason, T.O., Palmer, G.B., Poeppelmeier, K.R., Schindler, J.L., Kannewurf, C.R., Nakabayashi, I.: Phase relationships and physical properties of homologous compounds in the zinc oxide-indium oxide system. J. Am. Ceram. Soc. 81, 1310 (1998).CrossRefGoogle Scholar
40.Joseph, B., Manoj, P.K., Vaidyan, V.K.: Studies on preparation and characterization of indium-doped zinc oxide films by chemical spray deposition. Bull. Mater. Sci. 28, 487 (2005).CrossRefGoogle Scholar
41.Pankove, J.I.: Optical Processes in Semiconductors (Prentice Hall, Englewood Cliffs, NJ, 1971).Google Scholar
42.Khranovskyy, V., Grossner, U., Lazorenko, V., Lashkarev, G., Svensson, B.G., Yakimova, R.: PEMOCVD of ZnO thin films, doped by Ga and some of their properties. Superlattices Microstruct. 39, 275 (2006).CrossRefGoogle Scholar
43.Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954).CrossRefGoogle Scholar
44.Kim, K.J., Park, Y.R.: Large and abrupt optical band gap variation in In-doped ZnO. Appl. Phys. 78, 474 (2001).Google Scholar
45.Pauporte, T., Lincot, D.: Electrodeposition of semiconductors for optoelectronic devices: Results on zinc oxide. Electrochim. Acta 45, 3345 (2000).CrossRefGoogle Scholar