Skip to main content Accessibility help
×
Home

3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A

  • Congqiang Lou (a1), Tao Jing (a1), Jingzhi Tian (a1), Yongjie Zheng (a1), Jiaoxia Zhang (a2), Mengyao Dong (a3), Chao Wang (a1), Chuanxin Hou (a4), Jincheng Fan (a5) and Zhanhu Guo (a6)...

Abstract

Three-dimensional graphene (3D-GN)/Cu/Fe3O4 composite support materials were synthesized by a modified chemical reduction method using graphene oxide precursor. A 3D-GN/Cu/Fe3O4 biosensor was prepared by coating the electrode with laccase. The electrochemical properties of the biosensor were investigated by cyclic voltammetry (CV) and differential pulse voltammetry using potassium ferricyanide, phosphate-buffered saline (PBS) solution, and bisphenol A (BPA) solution. The current response of 3D-GN/Cu/Fe3O4 biosensors presents a remarkable sensitivity based on CV. The linear range of BPA is 7.2–18 μM using differential pulse voltammetry in PBS solution (pH = 4.0). A linear fitting equation of the laccase biosensor was observed for the current response as a function of BPA concentration. The detection limit was decreased to 1.7 μM. The detection approach herein turns out to be highly sensitive, has a wide linear range, and exhibits excellent stability.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A
      Available formats
      ×

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: jtkr@163.com
b)e-mail: zyj1964@163.com
d)e-mail: zguo10@utk.edu

References

Hide All
1.Ma, L., Zhu, Y., Wang, M., Yang, X., Song, G., and Huang, Y.: Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface. Compos. Sci. Technol. 170, 148 (2019).
2.Ma, L., Li, N., Wu, G., Song, G., Li, X., Han, P., Wang, G., and Huang, Y.: Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water. Appl. Surf. Sci. 433, 560 (2018).
3.Ma, L., Zhu, Y., Feng, P., Song, G., Huang, Y., Liu, H., Zhang, J., Fan, J., Hou, H., and Guo, Z.: Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites, Part B 176, 107078 (2019).
4.Zhu, G., Cui, X., Zhang, Y., Chen, S., Dong, M., Liu, H., Shao, Q., Ding, T., Wu, S., and Guo, Z.: Poly(vinyl butyral)/graphene oxide/poly (methylhydrosiloxane) nanocomposite coating for improved aluminum alloy anticorrosion. Polymer 172, 415 (2019).
5.Yang, J., Yang, W., Wang, X., Dong, M., Liu, H., Wujcik, E.K., Shao, Q., Wu, S., Ding, T., and Guo, Z.: Synergistically toughening polyoxymethylene by methyl methacrylate–butadiene–styrene copolymer and thermoplastic polyurethane. Macromol. Chem. Phys. 220, 1800567 (2019).
6.Lin, Z., Lin, B., Wang, Z., Chen, S., Wang, C., Dong, M., Gao, Q., Shao, Q., Ding, T., Liu, H., Wu, S., and Guo, Z.: Facile preparation of 1T/2H–Mo(S1−xSex)2 nanoparticles for boosting hydrogen evolution reaction. ChemCatChem 11, 2217 (2019).
7.Gu, H., Xu, X., Dong, M., Xie, P., Shao, Q., Fan, R., Liu, C., Wu, S., Wei, R., and Guo, Z.: Carbon nanospheres induced high negative permittivity in nanosilver-polydopamine metacomposites. Carbon 147, 550 (2019).
8.Shi, Z.J., Xu, G.F., Deng, J., Dong, M.Y., Murugadoss, V., Liu, C.T., Shao, Q., Wu, S.D., and Guo, Z.H.: Structural characterization of lignin from D. sinicus by FTIR and NMR techniques. Green Chem. Lett. Rev. 12, 235 (2019).
9.Xu, G., Shi, Z., Zhao, Y., Deng, J., Dong, M., Liu, C., Murugadoss, V., Mai, X., and Guo, Z.: Structural characterization of lignin and its carbohydrate complexes isolated from bamboo (Dendrocalamus sinicus). Int. J. Biol. Macromol. 126, 376 (2019).
10.Shi, Z., Jia, C., Wang, D., Deng, J., Xu, G., Wu, C., Dong, M., and Guo, Z.: Synthesis and characterization of porous tree gum grafted copolymer derived from Prunus cerasifera gum polysaccharide. Int. J. Biol. Macromol. 133, 964 (2019).
11.Zhao, Z., Bai, P., Misra, R.D.K., Dong, M., Guan, R., Li, Y., Zhang, J., Tan, L., Gao, J., Ding, T., Du, W., and Guo, Z.: AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis. J. Alloys Compd. 792, 203 (2019).
12.Gong, X., Liu, Y., Wang, Y., Xie, Z., Dong, Q., Dong, M., Liu, H., Shao, Q., Lu, N., Murugadoss, V., Ding, T., and Guo, Z.: Amino graphene oxide/dopamine modified aramid fibers: Preparation, epoxy nanocomposites and property analysis. Polymer 168, 131 (2019).
13.Chen, Q., Yin, Q., Dong, A., Gao, Y., Qian, Y., Wang, D., Dong, M., Shao, Q., Liu, H., Han, B-H., Ding, T., Guo, Z., and Wang, N.: Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis. Polymer 169, 255 (2019).
14.Luo, X.L., Pei, F., Wang, W., Qian, H.M., Miao, K.K., Pan, Z., Chen, Y.S., and Feng, G.D.: Microwave synthesis of hierarchical porous materials with various structures by controllable desilication and recrystallization. Microporous Mesoporous Mater. 262, 148 (2018).
15.Liu, Y.C., Shi, M.J., Yan, C., Zhuo, Q.Q., Wu, H.Z., Wang, L., Liu, H., and Guo, Z.H.: Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storage. J. Mater. Sci.: Mater. Electron. 30, 6583 (2019).
16.Yang, L., Shi, M., Jiang, J., Liu, Y., Yan, C., Liu, H., and Guo, Z.: Heterogeneous interface induced formation of balsam pear-like PPy for high performance supercapacitors. Mater. Lett. 244, 27 (2019).
17.Sheng, Y.Y., Yang, J., Wang, F., Liu, L.C., Liu, H., Yan, C., and Guo, Z.H.: Sol–gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl. Surf. Sci. 465, 154 (2019).
18.Luo, X.L., Pan, Z., Pei, F., Jin, Z.P., Miao, K.K., Yang, P.F., Qian, H.M., Chen, Q., and Feng, G.D.: In situ growth of hollow Cu2O spheres using anionic vesicles as soft templates. J. Ind. Eng. Chem. 59, 410 (2018).
19.Shen, C., Liu, X., Cao, H., Zhou, Y., Liu, J., Tang, J., Guo, X., Huang, H., and Chen, X.: Brain-Like navigation scheme based on MEMS-INS and place recognition. Appl. Sci. 9, 1708 (2019).
20.Zhao, Z.Y., Guan, R.G., Zhang, J.H., Zhao, Z.Y., and Bai, P.K.: Effects of process parameters of semisolid stirring on microstructure of Mg–3Sn–1Mn–3SiC (wt%) strip processed by rheo-rolling. Acta Metall. Sin. 30, 66 (2017).
21.Liu, M., Yang, Z., Sun, H., Lai, C., Zhao, X., Peng, H., and Liu, T.: A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 3735 (2016).
22.Liu, M.K., Li, B.M., Zhou, H., Chen, C., Liu, Y.Q., and Liu, T.X.: Extraordinary rate capability achieved by a 3D “skeleton/skin” carbon aerogel-polyaniline hybrid with vertically aligned pores. Chem. Commun. 53, 2810 (2017).
23.Liang, T., Qi, L., Ma, Z., Xiao, Z., Wang, Y., Liu, H., Zhang, J., Guo, Z., Liu, C., Xie, W., Ding, T., and Lu, N.: Experimental study on thermal expansion coefficient of composite multi-layered flaky gun propellants. Composites, Part B 166, 428 (2019).
24.Ma, R., Wang, Y., Qi, H., Shi, C., Wei, G., Xiao, L., Huang, Z., Liu, S., Yu, H., Teng, C., Liu, H., Murugadoss, V., Zhang, J., Wang, Y., and Guo, Z.: Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation. Composites, Part B 167, 396 (2019).
25.Ren, J., Hou, Q., Chen, H., Liu, T., He, H., Wang, J., Shao, Q., Dong, M., Wu, S., Wang, N., Lin, J., Luo, Q., and Guo, Z.: Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. ChemElectroChem 6, 3167 (2019).
26.Lin, B., Lin, Z., Chen, S., Yu, M., Li, W., Gao, Q., Dong, M., Shao, Q., Wu, S., Ding, T., and Guo, Z.: Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Trans. 48, 8279 (2019).
27.Le, K., Wang, Z., Wang, F., Wang, Q., Shao, Q., Murugadoss, V., Wu, S., Liu, W., Liu, J., Gao, Q., and Guo, Z.: Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 48, 5193 (2019).
28.Ma, Y., Hou, C., Zhang, H., Zhang, Q., Liu, H., Wu, S., and Guo, Z.: Three-dimensional core–shell Fe3O4/polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114 (2019).
29.Li, R., Zhu, X., Fu, Q., Liang, G., Chen, Y., Luo, L., Dong, M., Shao, Q., Lin, C., Wei, R., and Guo, Z.: Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem. Commun. 55, 2493 (2019).
30.Idrees, M., Batool, S., Kong, J., Zhuang, Q., Liu, H., Shao, Q., Lu, N., Feng, Y., Wujcik, E.K., Gao, Q., Ding, T., Wei, R., and Guo, Z.: Polyborosilazane derived ceramics—Nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925 (2019).
31.Yuan, Y., Yu, Q., Wen, J., Li, C., Guo, Z., Wang, X., and Wang, N.: Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew. Chem., Int. Ed. 58, 11785 (2019).
32.Li, S., Yang, P., Liu, X., Zhang, J., Xie, W., Wang, C., Liu, C., and Guo, Z.: Graphene oxide based dopamine mussel-like cross-linked polyethylene imine nanocomposite coating with enhanced hexavalent uranium adsorption. J. Mater. Chem. A. 7, 16902 (2019).
33.Huang, Y., Zeng, X., Guo, L., Lan, J., Zhang, L., and Cao, D.: Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 194, 462 (2018).
34.Zhao, Z., An, H., Lin, J., Feng, M., Murugadoss, V., Ding, T., Liu, H., Shao, Q., Mai, X., Wang, N., Gu, H., Angaiah, S., and Guo, Z.: Progress on the photocatalytic reduction removal of chromium contamination. Chem. Rec. 19, 873 (2019).
35.Qian, Y.X., Yuan, Y.H., Wang, H.L., Liu, H., Zhang, J.X., Shi, S., Guo, Z.H., and Wang, N.: Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J. Mater. Chem. A 6, 24676 (2018).
36.Guo, Z., Yang, P., Yang, L., Luo, Q., Wang, J., hao, Y., Yang, R., Lai, X., Zhao, X., Gao, Q., Shao, Q., Wu, S., Ding, T., fu, Q., Mai, X., Dong, M., and Lin, J.: Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for an effective hydrogen generation. Chem. Commun. 55, 9011 (2019).
37.Xu, S., Lv, Y., Zeng, X., and Cao, D.: ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater. Chem. Eng. J. 323, 502 (2017).
38.Sun, H., Yang, Z., Pu, Y., Dou, W., Wang, C., Wang, W., Hao, X., Chen, S., Shao, Q., Dong, M., Wu, S., Ding, T., and Guo, Z.: Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J. Colloid Interface Sci. 547, 40 (2019).
39.Shi, Z., Wu, C., Gu, Y., Liang, Y., Xu, G., Liu, H., Zhang, J., Hou, H., Zhang, J., and Guo, Z.: Preparation and characterization of mesoporous CuO/ZSM-5 catalysts for automotive exhaust purification. Sci. Adv. Mater. 11, 1198 (2019).
40.Wang, Y.Z.M., Jing, T., Tian, J., Chen, P., Dong, M., Wang, C., Yan, C., Liu, C., Ding, T., Xie, W., and Guo, Z.: Component determination and their formation of PM2.5. Sci. Adv. Mater. 11, 756 (2019).
41.Niu, X., Yang, W., Wang, G., Ren, J., Guo, H., and Gao, J.: A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim. Acta 98, 167 (2013).
42.Lin, C-L., Zhang, J-X., and Lan, L.: Analyses of rural drinking water resources quality in the north area of Shaanxi. Desalin. Water Treat. 54, 637 (2015).
43.Lin, C., Fan, B., Zhang, J.X., Yang, X., and Zhang, H.: Study on lead ion wastewater treatment of self-assembled film. Desalin. Water Treat. 57, 21627 (2016).
44.Shi, Z., Wu, C., Wu, Y., Liu, H., Xu, G., Deng, J., Gu, H.L.H., Zhang, J., Umar, A., Ma, Y., and Guo, Z.: Optimization of epoxypinane synthesis by silicotungstic acid supported on SBA-15 catalyst using response surface methodology. Sci. Adv. Mater. 11, 699 (2019).
45.Wang, C., Lan, F., He, Z., Xie, X., Zhao, Y., Hou, H., Guo, L., Murugadoss, V., Liu, H., Shao, Q., Gao, Q., Ding, T., Wei, R., and Guo, Z.: Iridium-based catalysts for solid polymer electrolyte electrocatalytic water splitting. ChemSusChem 12, 1576 (2019).
46.Andreescu, S. and Sadik, O.A.: Correlation of analyte structures with biosensor responses using the detection of phenolic estrogens as a model. Anal. Chem. 76, 552 (2004).
47.Yu, C.M., Gou, L.L., Zhou, X.H., Bao, N., and Gu, H.Y.: Chitosan–Fe3O4 nanocomposite based electrochemical sensors for the determination of bisphenol A. Electrochim. Acta 56, 9056 (2011).
48.Chen, S., Chen, J., and Zhu, X.: Solid phase extraction of bisphenol A using magnetic core–shell (Fe3O4@SiO2) nanoparticles coated with an ionic liquid, and its quantitation by HPLC. Microchim. Acta 183, 1315 (2016).
49.Sun, Y., Zhang, W-Y., Xing, J., and Wang, C-M.: Solid phase microfibers based on modified single-walled carbon nanotubes for simultaneous determination of alkylphenols and bisphenol A in purified water samples. Chin. J. Anal. Chem. 39, 1432 (2011).
50.Du, L., Zhang, C., Wang, L., Liu, G., Zhang, Y., and Wang, S.: Ultrasensitive time-resolved microplate fluorescence immunoassay for bisphenol A using a system composed on gold nanoparticles and a europium(III)-labeled streptavidin tracer. Microchim. Acta 182, 539 (2015).
51.Lu, X., Li, Y., Tao, L., Song, D., Wang, Y., Li, Y., and Gao, F.: Amorphous metal boride as a novel platform for acetylcholinesterase biosensor development and detection of organophosphate pesticides. Nanotechnology 30, 055501 (2019).
52.Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., and Lin, Y.: Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22, 1027 (2010).
53.Liu, Y., Qu, X., Guo, H., Chen, H., Liu, B., and Dong, S.: Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite. Biosens. Bioelectron. 21, 2195 (2006).
54.Luo, X.L., Morrin, A., Killard, A.J., and Smyth, M.R.: Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18, 319 (2006).
55.Wu, S., He, Q., Tan, C., Wang, Y., and Zhang, H.: Graphene-based electrochemical sensors. Small 9, 1160 (2013).
56.Ge, S., Yan, M., Lu, J., Zhang, M., Yu, F., Yu, J., Song, X., and Yu, S.: Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis. Biosens. Bioelectron. 31, 49 (2012).
57.Ameen, S., Akhtar, M.S., and Shin, H.S.: Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sens. Actuators, B 173, 177 (2012).
58.Zhang, J., Li, P., Zhang, Z., Wang, X., Tang, J., Liu, H., Shao, Q., Ding, T., Umar, A., and Guo, Z.: Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. J. Colloid Interface Sci. 542, 159 (2019).
59.Schwierz, F.: Graphene transistors: Status, prospects, and problems. Proc. IEEE 101, 1567 (2013).
60.Anonymous: The rise and rise of graphene. Nat. Nanotechnol. 5, 755 (2010).
61.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).
62.Hou, C., Tai, Z., Zhao, L., Zhai, Y., Hou, Y., Fan, Y., Dang, F., Wang, J., and Liu, H.: High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J. Mater. Chem. A 6, 9723 (2018).
63.Zhang, J., Zhang, Z., Jiao, Y., Yang, H., Li, Y., Zhang, J., and Gao, P.: The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 419, 99 (2019).
64.Xia, J., Chen, F., Li, J., and Tao, N.: Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505 (2009).
65.Jiao, Y., Zhang, J., Liu, S., Liang, Y., Li, S., Zhou, H., and Zhang, J.: The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci. Adv. Mater. 10, 1706 (2018).
66.Cheng, Z., Li, Q., Li, Z., Zhou, Q., and Fang, Y.: Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 10, 1864 (2010).
67.Zhang, J.X., Liang, Y.X., Wang, X., Zhou, H.J., Li, S.Y., Zhang, J., Feng, Y., Lu, N., Wang, Q., and Guo, Z.: Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv. Compos. Hybrid Mater. 1, 300 (2018).
68.Sun, Y., Li, C., Xu, Y., Bai, H., Yao, Z., and Shi, G.: Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chem. Commun. 46, 4740 (2010).
69.Chen, D., Zhang, H., Liu, Y., and Li, J.: Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 6, 1362 (2013).
70.Li, Y., Jing, T., Xu, G., Tian, J., Dong, M., Shao, Q., Wang, B., Wang, Z., Zheng, Y., Yang, C., and Guo, Z.: 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 149, 13 (2018).
71.He, Y., Chen, Q., Liu, H., Zhang, L., Wu, D., Lu, C., OuYang, W., Jiang, D., Wu, M., Zhang, J., Li, Y., Fan, J., Liu, C., and Guo, Z.: Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites. Macromol. Mater. Eng., 1900166 (2019).
72.Huang, X., Yin, R., Qian, L., Zhao, W., Liu, H., Liu, C., Fan, J., Hou, H., and Guo, Z.: Processing conditions dependent tunable negative permittivity in reduced graphene oxide-alumina nanocomposites. Ceram. Int. 45, 11784 (2019).
73.Kirubasankar, B., Murugadoss, V., Lin, J., Ding, T., Dong, M., Liu, H., Zhang, J., Li, T., Wang, N., Guo, Z., and Angaiah, S.: In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414 (2018).
74.Li, W., Geng, X., Guo, Y., Rong, J., Gong, Y., Wu, L., Zhang, X., Li, P., Xu, J., Cheng, G., Sun, M., and Liu, L.: Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5, 6955 (2011).
75.Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S., and Cheng, M.M-C.: Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators, B 157, 310 (2011).
76.Zhang, B. and Cui, T.: An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Appl. Phys. Lett. 98, 073116 (2011).
77.Kulkarni, G.S., Reddy, K., Zhong, Z., and Fan, X.: Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 5, 4376 (2014).
78.Choi, H., Choi, J.S., Kim, J-S., Choe, J-H., Chung, K.H., Shin, J-W., Kim, J.T., Youn, D-H., Kim, K-C., Lee, J-I., Choi, S-Y., Kim, P., Choi, C-G., and Yu, Y-J.: Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10, 3685 (2014).
79.Jiang, D., Wang, Y., Li, B., Sun, C., Wu, Z., Yan, H., Xing, L., Qi, S., Li, Y., Liu, H., Xie, W., Wang, X., Ding, T., and Guo, Z.: Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromol. Mater. Eng., 304, 1900074 (2019).
80.Li, Y., Zhang, T., Jiang, B., Zhao, L., Liu, H., Zhang, J., Fan, J., Guo, Z., and Huang, Y.: Interfacially reinforced carbon fiber silicone resin via constructing functional nano-structural silver. Compos. Sci. Technol. 181, 107689 (2019).
81.Zhang, S., Liu, H., Yang, S., Shi, X., Zhang, D., Shan, C., Mi, L., Liu, C., Shen, C., and Guo, Z.: Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11, 10922 (2019).
82.Wang, C., Zhao, M., Li, J., Yu, J., Sun, S., Ge, S., Guo, X., Xie, F., Jiang, B., Wujcik, E.K., Huang, Y., Wang, N., and Guo, Z.: Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131, 263 (2017).
83.Guo, Y., Sun, Y., Wang, Y.X., He, H., and Zhu, Y.H.: Thiol- and alkyne-functionalized copper nanoparticles as electrocatalysts for bisphenol A (BPA) oxidation. J. Solid State Electrochem. 23, 91 (2019).
84.Wang, X., Lu, X.B., Wu, L.D., and Chen, J.P.: 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosens. Bioelectron. 65, 295 (2015).
85.Zhu, L., Luo, L., and Wang, Z.: DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens. Bioelectron. 35, 507 (2012).
86.Portaccio, M., Di Tuoro, D., Arduini, F., Moscone, D., Cammarota, M., Mita, D.G., and Lepore, M.: Laccase biosensor based on screen-printed electrode modified with thionine-carbon black nanocomposite, for bisphenol A detection. Electrochim. Acta 109, 340 (2013).
87.Dempsey, E., Diamond, D., and Collier, A.: Development of a biosensor for endocrine disrupting compounds based on tyrosinase entrapped within a poly(thionine) film. Biosens. Bioelectron. 20, 367 (2004).
88.Zheng, Y., Wang, D., Li, Z., Sun, X., Gao, T., and Zhou, G.: Laccase biosensor fabricated on flower-shaped yolk–shell SiO2 nanospheres for catechol detection. Colloids Surf., A 538, 202 (2018).
89.Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A., and Niu, L.: Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25, 12030 (2009).
90.Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N., Wei, R., Subramania, A., and Guo, Z.: Electromagnetic interference shielding polymers and nanocomposites—A review. Polym. Rev. 59, 280 (2019).
91.Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S., and Guo, Z.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696 (2018).
92.Wu, N., Xu, D., Wang, Z., Wang, F., Liu, J., Liu, W., Shao, Q., Liu, H., Gao, Q., and Guo, Z.: Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433 (2019).
93.Gu, H., Zhang, H., Ma, C., Sun, H., Liu, C., Dai, K., Zhang, J., Wei, R., Ding, T., and Guo, Z.: Smart strain sensing organic–inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. J. Mater. Chem. C 7, 2353 (2019).
94.Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., Dai, K., Shan, C., Guo, J., Liu, C., Shen, C., Wang, X., Wang, N., Wang, Z., Wei, R., and Guo, Z.: Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 6, 12121 (2018).
95.Li, Q., Liu, H., Zhang, S., Zhang, D., Liu, X., He, Y., Mi, L., Zhang, J., Liu, C., Shen, C., and Guo, Z.: Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property. ACS Appl. Mater. Interfaces 11, 21904 (2019).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed