Skip to main content Accessibility help

3D printing of poly(ε-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering

  • Kazim K. Moncal (a1), Dong N. Heo (a1), Kevin P. Godzik (a2), Donna M. Sosnoski (a3), Oliver D. Mrowczynski (a4), Elias Rizk (a4), Veli Ozbolat (a5), Scott M. Tucker (a6), Ethan M. Gerhard (a2), Madhuri Dey (a7), Gregory S. Lewis (a6), Jian Yang (a2) and Ibrahim T. Ozbolat (a8)...


Three-dimensional (3D) printing technology is a promising method for bone tissue engineering applications. For enhanced bone regeneration, it is important to have printable ink materials with appealing properties such as construct interconnectivity, mechanical strength, controlled degradation rates, and the presence of bioactive materials. In this respect, we develop a composite ink composed of polycaprolactone (PCL), poly(D,L-lactide-co-glycolide) (PLGA), and hydroxyapatite particles (HAps) and 3D print it into porous constructs. In vitro study revealed that composite constructs had higher mechanical properties, surface roughness, quicker degradation profile, and cellular behaviors compared to PCL counterparts. Furthermore, in vivo results showed that 3D-printed composite constructs had a positive influence on bone regeneration due to the presence of newly formed mineralized bone tissue and blood vessel formation. Therefore, 3D printable ink made of PCL/PLGA/HAp can be a highly useful material for 3D printing of bone tissue constructs.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tang, D., Tare, R.S., Yang, L.Y., Williams, D.F., Ou, K.L., and Oreffo, R.O.: Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration. Biomaterials 83, 363382 (2016).
2.Venkatesan, J., Bhatnagar, I., Manivasagan, P., Kang, K.H., and Kim, S.K.: Alginate composites for bone tissue engineering: A review. Int. J. Biol. Macromol. 72, 269281 (2015).
3.Gao, C., Deng, Y., Feng, P., Mao, Z., Li, P., Yang, B., Deng, J., Cao, Y., Shuai, C., and Peng, S.: Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int. J. Mol. Sci. 15, 47144732 (2014).
4.Mediero, A., Wilder, T., Perez-Aso, M., and Cronstein, B.N.: Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J. 29, 15771590 (2015).
5.Semyari, H., Rajipour, M., Sabetkish, S., Sabetkish, N., Abbas, F.M., and Kajbafzadeh, A.M.: Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: An animal study. Cell Tissue Banking 17, 6983 (2016).
6.Shadjou, N. and Hasanzadeh, M.: Silica-based mesoporous nanobiomaterials as promoter of bone regeneration process. J. Biomed. Mater. Res., Part A 103, 37033716 (2015).
7.Kim, J., McBride, S., Donovan, A., Darr, A., Magno, M.H.R., and Hollinger, J.O.: Tyrosine-derived polycarbonate scaffolds for bone regeneration in a rabbit radius critical-size defect model. Biomed. Mater. 10, 035001 (2015).
8.Shi, S., Jiang, W.B., Zhao, T.X., Aifantis, K.E., Wang, H., Lin, L., Fan, Y.B., Feng, Q.L., Cui, F.Z., and Li, X.M.: The application of nanomaterials in controlled drug delivery for bone regeneration. J. Biomed. Mater. Res., Part A 103, 39783992 (2015).
9.Heller, M., Bauer, H.K., Goetze, E., Gielisch, M., Ozbolat, I.T., Moncal, K.K., Rizk, E., Seitz, H., Gelinsky, M., Schroder, H.C., Wang, X.H., Muller, W.E., and Al-Nawas, B.: Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration. Int. J. Comput. Dent. 19, 301321 (2016).
10.Vural, A.C., Odabas, S., Korkusuz, P., Saglam, A.S.Y., Bilgic, E., Cavusoglu, T., Piskin, E., and Vargel, I.: Cranial bone regeneration via BMP-2 encoding mesenchymal stem cells. Artif. Cells, Nanomed., Biotechnol. 45, 544550 (2017).
11.van der Stok, J., Lozano, D., Chai, Y.C., Yavari, S.A., Coral, A.P.B., Verhaar, J.A.N., Gomez-Barrena, E., Schrooten, J., Jahr, H., Zadpoor, A.A., Esbrit, P., and Weinans, H.: Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats. Tissue Eng., Part A 21, 14951506 (2015).
12.Ni, P., Ding, Q.X., Fan, M., Liao, J.F., Qian, Z.Y., Luo, J.C., Li, X.Q., Luo, F., Yang, Z.M., and Wei, Y.Q.: Injectable thermosensitive PEG–PCL–PEG hydrogel/acellular bone matrix composite for bone regeneration in cranial defects. Biomaterials 35, 236248 (2014).
13.Gredes, T., Kunath, F., Gedrange, T., and Kunert-Keil, C.: Bone regeneration after treatment with covering materials composed of flax fibers and biodegradable plastics: A histological study in rats. BioMed Res. Int. 5146285 (2016).
14.Cox, S.C., Thornby, J.A., Gibbons, G.J., Williams, M.A., and Mallick, K.K.: 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng., C 47, 237247 (2015).
15.Kao, C.T., Lin, C.C., Chen, Y.W., Yeh, C.H., Fang, H.Y., and Shie, M.Y.: Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater. Sci. Eng., C 56, 165173 (2015).
16.Holmes, B., Bulusu, K., Plesniak, M., and Zhang, L.G.: A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27, 064001 (2016).
17.Wang, M.O., Vorwald, C.E., Dreher, M.L., Mott, E.J., Cheng, M.H., Cinar, A., Mehdizadeh, H., Somo, S., Dean, D., Brey, E.M., and Fisher, J.P.: Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv. Mater. 27, 138144 (2015).
18.Lee, S.J., Lee, D., Yoon, T.R., Kim, H.K., Jo, H.H., Park, J.S., Lee, J.H., Kim, W.D., Kwon, I.K., and Park, S.A.: Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater. 40, 182191 (2016).
19.Pati, F., Song, T.H., Rijal, G., Jang, J., Kim, S.W., and Cho, D.W.: Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37, 230241 (2015).
20.Bose, S., Vahabzadeh, S., and Bandyopadhyay, A.: Bone tissue engineering using 3D printing. Mater. Today 16, 496504 (2013).
21.Hospodiuk, M., Moncal, K.K., Dey, M., and Ozbolat, I.T.: Extrusion-based biofabrication in tissue engineering and regenerative medicine. In: 3D Printing and Biofabrication, Ovsianikov, A., Yoo, J., Mironov, V. eds. (Springer International Publishing, 2016); pp. 127.
22.Tsang, V.L. and Bhatia, S.N.: Three-dimensional tissue fabrication. Adv. Drug Delivery Rev. 56, 16351647 (2004).
23.Heo, S.J., Kim, S.E., Wei, J., Kim, D.H., Hyun, Y.T., Yun, H.S., Kim, H.K., Yoon, T.R., Kim, S.H., Park, S.A., Shin, J.W., and Shin, J.W.: In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Tissue Eng., Part A 15, 977989 (2009).
24.Ulery, B.D., Nair, L.S., and Laurencin, C.T.: Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 49, 832864 (2011).
25.Kwon, D.Y., Kwon, J.S., Park, S.H., Park, J.H., Jang, S.H., Yin, X.Y., Yun, J.H., Kim, J.H., Min, B.H., Lee, J.H., Kim, W.D., and Kim, M.S.: A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells. Sci. Rep. 5, 12721 (2015).
26.Lee, J.B., Kim, S.E., Heo, D.N., Kwon, I.K., and Choi, B.J.: In vitro characterization of nanofibrous PLGA/gelatin/hydroxyapatite composite for bone tissue engineering. Macromol. Res. 18, 11951202 (2010).
27.Wei, G.B. and Ma, P.X.: Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25, 47494757 (2004).
28.Li, X., Zhang, S., Zhang, X., Xie, S., Zhao, G., and Zhang, L.: Biocompatibility and physicochemical characteristics of poly(ε-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater. Des. 114, 149160 (2017).
29.Ozbolat, I.T., Chen, H., and Yu, Y.: Development of ‘Multi-arm Bioprinter’ for hybrid biofabrication of tissue engineering constructs. Robot. Comput. Integrated Manuf. 30, 295304 (2014).
30.Ozbolat, V., Dey, M., Ayan, B., Povilianskas, A., Demirel, M.C., and Ozbolat, I.T.: 3D printing of PDMS improves its mechanical and cell adhesion properties. ACS Biomater. Sci. Eng. 4, 682693 (2018).
31.Yang, J., Webb, A.R., Pickerill, S.J., Hageman, G., and Ameer, G.A.: Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 27, 18891898 (2006).
32.Zhang, L. and Chan, C.: Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J. Visualized Exp. 37, e1852 (2010).
33.Abderrahim, B., Abderrahman, E., Mohamed, A., Fatima, T., Abdesselam, T., and Krim, O.: Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: Comparative study. World J. Environ. Eng. 3, 95110 (2015).
34.Zhang, J., Liu, Y., Luo, R.F., Chen, S., Li, X., Yuan, S.H., Wang, J., and Huang, N.: In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings. Appl. Surf. Sci. 328, 154162 (2015).
35.Berzina-Cimdina, L. and Borodajenko, N.: Research of calcium phosphates using Fourier transform infrared spectroscopy. Infrared Spectrosc.: Mater. Sci., Eng. Technol. (InTech, 2012); pp. 123148.
36.Rhodes, G.: Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models, 3rd ed. (Elsevier, 2010); pp. 61306.
37.Mu, L. and Feng, S.S.: A novel controlled release formulation for the anticancer drug paclitaxel (taxol (R)): PLGA nanoparticles containing vitamin E TPGS. J. Controlled Release 86, 3348 (2013).
38.Velasco, M.A., Narvaez-Tovar, C.A., and Garzon-Alvarado, D.A.: Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BioMed Res. Int. 729076 (2015).
39.Ozbolat, I.T. and Hospodiuk, M.: Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321343 (2016).
40.Ozbolat, I.T., Moncal, K.K., and Gudapati, H.: Evaluation of bioprinter technologies. Addit. Manuf. 13, 179200 (2017).
41.Hospodiuk, M., Dey, M., Sosnoski, D., and Ozbolat, I.T.: The bioink: A comprehensieve review on bioprintable materials. Biotechnol. Adv. 35, 217239 (2017).
42.Sung, H.J., Meredith, C., Johnson, C., and Galis, Z.S.: The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25, 57355742 (2004).
43.Hiep, N.T., Chan Khon, H., Hai, N.D., Byong-Taek, L., Toi, V.V., and Hung, L.T.: Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. J. Biomater. Sci., Polym. Ed. 28, 864878 (2017).
44.Jones, A.C., Arns, C.H., Sheppard, A.P., Hutmacher, D.W., Milthorpe, B.K., and Knackstedt, M.A.: Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28, 24912504 (2007).
45.D’Mello, S., Atluri, K., Geary, S.M., Hong, L., Elangovan, S., and Salem, A.K.: Bone regeneration using gene-activated matrices. AAPS J. 19, 4353 (2017).
46.Heo, D.N., Castro, N.J., Lee, S.J., Noh, H., Zhu, W., and Zhang, L.G.: Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale 9, 50555062 (2017).
47.Leberfinger, A.N., Moncal, K.K., Ravnic, D.J., and Ozbolat, I.T.: 3D printing for cell therapy applications. In: Cell Therapy, Emerich, D., Orive, G. eds. (Humana Press, Cham, 2017); pp. 227248.
48.Hung, B.P., Naved, B.A., Nyberg, E.L., Dias, M., Holmes, C.A., Elisseeff, J.H., Dorafshar, A.H., and Grayson, W.L.: Three-dimensional printing of bone extracellular matrix for craniofacial regeneration. ACS Biomater. Sci. Eng. 2, 18061816 (2016).
49.Dong, L., Wang, S.J., Zhao, X.R., Zhu, Y.F., and Yu, J.K.: 3D-printed poly(epsilon-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci. Rep. 7, 13412 (2017).
50.Datta, P., Ozbolat, V., Ayan, B., Dhawan, A., and Ozbolat, I.T.: Bone tissue bioprinting for craniofacial reconstruction. Biotechnol. Bioeng. 114, 24242431 (2017).
51.Ozbolat, I.T., Peng, W., and Ozbolat, V.: Application areas of 3D bioprinting. Drug Discovery Today 21, 12571271 (2016).


Related content

Powered by UNSILO

3D printing of poly(ε-caprolactone)/poly(D,L-lactide-co-glycolide)/hydroxyapatite composite constructs for bone tissue engineering

  • Kazim K. Moncal (a1), Dong N. Heo (a1), Kevin P. Godzik (a2), Donna M. Sosnoski (a3), Oliver D. Mrowczynski (a4), Elias Rizk (a4), Veli Ozbolat (a5), Scott M. Tucker (a6), Ethan M. Gerhard (a2), Madhuri Dey (a7), Gregory S. Lewis (a6), Jian Yang (a2) and Ibrahim T. Ozbolat (a8)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.