Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-29T18:18:05.237Z Has data issue: false hasContentIssue false

Lowering the Age of Consent for Vaccination to Promote Pediatric Vaccination: It’s Worth a Shot

Published online by Cambridge University Press:  31 May 2024

Margaret Irwin
Affiliation:
BOSTON COMBINED RESIDENCY PROGRAM, BOSTON, MASSACHUSETTS, USA.
Derek R. Soled
Affiliation:
HARVARD COMBINED INTERNAL MEDICINE/PEDIATRICS PROGRAM, BOSTON, MASSACHUSETTS, USA.
Christy L. Cummings
Affiliation:
HARVARD MEDICAL SCHOOL, BOSTON, MASSACHUSETTS, USA.

Abstract

This paper challenges historically preconceived notions surrounding a minor’s ability to make medical decisions, arguing that federal health law should be reformed to allow minors with capacity as young as age 12 to consent to their own Centers for Diseases Control and Prevention (CDC)-approved COVID-19 vaccinations. This proposal aligns with and expands upon current exceptions to limitations on adolescent decision-making. This analysis reviews the historic and current anti-vaccination sentiment, examines legal precedence and rationale, outlines supporting ethical arguments regarding adolescent decision-making, and offers rebuttals to anticipated ethical counterarguments.

Type
Independent Articles
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of American Society of Law, Medicine & Ethics

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Whelan, A., “Lower the Age of Consent: Pushing Back Against the Anti-Vaccine Movement,” Journal of Law, Medicine and Ethics 44, no. 3 (2016): 462473.Google ScholarPubMed
See Whelan, supra note 1.Google Scholar
Hinman, A. R., Orenstein, W. A., and Schuchat, A., “Vaccine-Preventable Diseases, Immunizations, and MMWR–1961–2011,” Morbidity and Mortality Weekly Report Supplements 60, no. 4 (2011): 4957.Google ScholarPubMed
. D. Schlenoff, What are the 10 Greatest Inventions of Our Time? (2013), Scientific American, available at <https://www.scientificamerican.com/article/inventions-what-are-the-10-greatest-of-our-time/> (last visited November 28, 2024).+(last+visited+November+28,+2024).>Google Scholar
Society for Adolescent Health and Medicine, “Adolescent Consent for Vaccination: A Position Paper of the Society for Adolescent Health and Medicine,” Journal of Adolescent Health 53 (2013): 550553; J. Little, “25 million teens missing recommended vaccines,” American Academy of Pediatrics News 17, no. 3 (2000): 81.CrossRefGoogle Scholar
Centers for Disease Control and Prevention, “National and State Vaccination Coverage Among Children Aged 19-35 Months — United States, 2010,” Morbidity and Mortality Weekly Report 60 (2011): 11571163; Centers for Disease Control and Prevention, “National and State Vaccination Coverage Among Adolescents Aged 13 through 17 Years – United States, 2011,” Morbidity and Mortality Weekly Report 61 (2012): 671–677.Google Scholar
See id, “National and State Vaccination Coverage Among Adolescents Aged 13 through 17 Years – United States, 2011.”Google Scholar
Centers for Disease Control and Prevention, COVID-19 Vaccinations in the United States (March 2023), available at <https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-pop12> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
American Academy of Pediatrics, Children and COVID-19 Vaccination Trends (March 2023), available at <https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-vaccination-trends/> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
G. Sparks, A. Kirzinger, L. Hamel, M. Stokes, A. Montero, and M. Brodie, KFF COVID-19 Vaccine Monitor: February 2022 (March 2022), available at <https://www.kff.org/coronavirus-covid-19/poll-finding/kff-covid-19-vaccine-monitor-february-2022/> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
AMA Code, “AMA Code of Medical Ethics’ Opinion on Adolescent Care,” AMA Journal of Ethics: Virtual Mentor 16, no. 11 (2014): 901902; A. L. Katz, S. A. Webb, and the Committee on Bioethics, “Informed Consent in Decision-Making in Pediatric Practice,” Pediatrics 138, no. 2 (2016): e20161484.Google Scholar
Moon, M., “Adolescents’ Right to Consent to Reproductive Medical Care: Balancing Respect for Families with Public Health Goals,” AMA Journal of Ethics: Medicine and Society 14, no. 10 (2012): 805808.Google ScholarPubMed
Agrawal, S. and Morain, S., “Who Calls the Shots? The Ethics of Adolescent Self-Consent for HPV Vaccination,” Journal of Medical Ethics 44, no. 8 (2018): 531535.Google ScholarPubMed
Council of the District of Columbia, D.C. Law 23-193: Minor Consent for Vaccination Amendment Act of 2020 (December 2020), available at <https://code.dccouncil.gov/us/dc/council/laws/23-193#:~:text=%22(a)%20A%20minor%2C,accordance%20with%20ACIP’s%20recommended%20immunization> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
Eggertson, L., “Lancet Retracts 12-Year-Old Article Linking Autism to MMR Vaccines,” Canadian Medical Association Journal 182, no. 4 (2010): E199E200.Google ScholarPubMed
See A. Whelan, supra note 1.Google Scholar
See L. Eggertson, supra note 15.Google Scholar
Hotez, P., “COVID Vaccines: Time to Confront Anti-Vax Aggression,” Nature 592, no. 7856 (2021): 661.Google ScholarPubMed
A. McVean, 40 Years of Human Experimentation in America, McGill Office for Science and Society (January 2019), available at <https://www.mcgill.ca/oss/article/history/40-years-human-experimentation-america-tuskegee-study> (last visited November 28, 2024).+(last+visited+November+28,+2024).>Google Scholar
Emanuel, E. J., Grady, C. C., Crouch, R. A., Lie, R. K., Miller, F. G., and Wendler, D. D., eds., The Oxford Textbook of Clinical Research Ethics (New York: Oxford University Press, 2008): at 8085.Google Scholar
Lovelace Jr, Biden’s next fight: Anti-vaxxers jeopardize plans to protect U.S. against Covid (February 2021), CNBC: Health and Science, available at <https://www.cnbc.com/2021/02/10/biden-covid-vaccine-anti-vaxxers-us.html> (last visited April 19, 2024); I. Ahmed, “Dismantling the Anti-Vaxx Industry,” Nature Medicine 27 (2021): 366.+(last+visited+April+19,+2024);+I.+Ahmed,+“Dismantling+the+Anti-Vaxx+Industry,”+Nature+Medicine+27+(2021):+366.>Google Scholar
Thompson, “Millions are Saying No to the Vaccines. What Are They Thinking?” (May 2021), The Atlantic, available at <https://www.theatlantic.com/ideas/archive/2021/05/the-people-who-wont-get-the-vaccine/618765/> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
S. Stecklow and A. Macaskill, “The ex-Pfizer scientist who became an “anti-vax” hero” (March 2021), Reuters, available at <https://www.reuters.com/investigates/special-report/health-coronavirus-vaccines-skeptic/> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
Burki, T., “The Online Anti-Vaccine Movement in the Age of COVID-19,” The Lancet: Digital Health 2, no. 10 (2020): E504E505.Google ScholarPubMed
M. Austermuhle, D.C Activists Want Bowser to Veto Bill That Would Allow Minors to Consent to Vaccines (December 2020), NPR: WAMU 88.5, available at <https://www.npr.org/local/305/2020/12/07/943882721/d-c-activists-want-bowser-to-veto-bill-that-would-allow-minors-to-consent-to-vaccines> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
Ohio Young Physician Section, Resolution 1(A19): Model Legislation for “Mature Minor” Consent to Vaccination (April 2019), AMA-YPS Reference Committee, available at <https://www.ama-assn.org/system/files/2019-05/a19-yps-resolution-01.pdf> (last visited April 19, 2024); VaxTeen, Consent Laws by State (2020), available at <https://www.vaxteen.org/consent-laws-by-state> (last visited April 19, 2024).+(last+visited+April+19,+2024);+VaxTeen,+Consent+Laws+by+State+(2020),+available+at++(last+visited+April+19,+2024).>Google Scholar
English, A., Shaw, F., McCauley, M., and Fishbein, D., “Legal Basis of Consent for Health Care and Vaccination,” Pediatrics 121 (2008): S85S87; R. S. Olick, Y.T. Yang, and J. Shaw, “Adolescent Consent to COVID-19 Vaccination: The Need for Law Reform,” Public Health Reports 137, no. 1 (2022): 163-167, doi: 10.1177/00333549211048784, Epub 2021 Sep 21, PMID: 34546811; PMCID: PMC8721754.Google ScholarPubMed
Maslyanskaya, S. and Alderman, E., “Confidentiality and Consent in the Care of the Adolescent Patient,” Pediatrics in Review 40, no. 10 (2019): 508516.Google ScholarPubMed
Alderson, P., “Competent Children? Minors’ Consent to Health Care Treatment and Research,” Social Science and Medicine 65, no. 11 (2007): 22722283.Google Scholar
Hein, M., De Vries, M. C., Troost, P. W., Meynen, G., Van Goudoever, J. B., and Lindauer, R. J. L., “Informed Consent Instead of Assent is Appropriate in Children from Age of 12: Policy Implications of New Findings on Children’s Competence to Consent to Clinical Research,” BMC Medical Ethics 16, no. 1 (2015): 76.Google ScholarPubMed
See Society for Adolescent Health and Medicine, supra note 5.Google Scholar
See S. Agrawal and S. Morain, supra note 13.Google Scholar
World Health Organization, Considerations Regarding Consent in Vaccinating Children and Adolescents Between 6 and 17 Years Old (May 2014), available at <https://www.who.int/publications/i/item/considerations-regarding-consent-in-vaccinating-children-and-adolescents-between-6-and-17-years-old> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
See P. Alderson, supra note 30; L. K. Mihaly, N. A. Schapiro, and A. English, “From Human Papillomavirus to COVID-19: Adolescent Autonomy and Minor Consent for Vaccines,” Journal of Pediatric Health Care 36, no. 6 (2022): 607-610, doi: 10.1016/j.pedhc.2022.06.007, Epub 2022 Aug 6, PMID: 35941049; PMCID: PMC9356615.Google Scholar
Zimet, G. D., Silverman, R. D., Bednarczyk, R. A., and English, A., “Adolescent Consent for Human Papillomavirus Vaccine: Ethical, Legal and Practical Considerations,” The Journal of Pediatrics 231 (2021): 2430.Google ScholarPubMed
Centers for Disease Control and Prevention, Vaccine Safety Dataline (October 2022), available at <https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vsd/index.html> (last visited April 19, 2024); J. M. Glanz, S. R. Newcomer, M. L. Jackson, S. B. Omer, R. A. Bednarczyk, J. A. Shoup, and M. F. Daley, White Paper on Studying the Safety of the Childhood Immunization Schedule (2014), CDC: Vaccine Safety Datalink, available at <https://www.cdc.gov/vaccinesafety/pdf/WhitePaperSafety_WEB.pdf> (April 19, 2024).+(last+visited+April+19,+2024);+J.+M.+Glanz,+S.+R.+Newcomer,+M.+L.+Jackson,+S.+B.+Omer,+R.+A.+Bednarczyk,+J.+A.+Shoup,+and+M.+F.+Daley,+White+Paper+on+Studying+the+Safety+of+the+Childhood+Immunization+Schedule+(2014),+CDC:+Vaccine+Safety+Datalink,+available+at++(April+19,+2024).>Google Scholar
Giffith, R., “What is the Gillick Competence?Human Vaccines and Immunotherapy 12, no. 1 (2016): 244247.Google Scholar
Agrawal, See S. and Morain, S., supra note 13.Google Scholar
Offit, P. A., Deadly Choices: How the Anti-Vaccine Movement Threatens Us All (New York: Basic Books, 2011).Google Scholar
Stokes, K., Zambrano, L. D., Anderson, K. N., Marder, E. P., Raz, K. M., Felix, S. E. B., Tie, Y., and Fullerton, K. E., “Coronavirus Disease 2019 Case Surveillance — United States, January 22–May 30, 2020,” Morbidity and Mortality Weekly Report 69, no. 24 (2020): 759765; N. Williams, T. Radia, K. Harman, P. Agrawal, J. Cook, and A. Gupta, “COVID-19 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review of Critically Unwell Children and the Association With Underlying Comorbidities,” European Journal of Pediatrics 180 (2021): 689–697; Centers for Disease Control and Prevention, Information for Pediatric Healthcare Providers, available at <https://www.cdc.gov/coronavirus/2019-ncov/hcp/pediatric-hcp.html> (last visited April 19, 2024).Google ScholarPubMed
Assaker, R., Colas, A. E., Julien-Marsollier, F., Bruneau, B., Marsac, L., Greff, B., Tri, N., Fait, C., Brasher, C., and Dahmani, S., “Presenting Symptoms of COVID-19 in Children: A Meta-Analysis of Published Studies,” British Journal of Anaesthesia 125, no. 3 (2020): e330e332; J. Poline, J. Gaschignard, C. Leblanc, F. Madhi, E. Foucaud, E. Nattes, A. Faye, S. Bonacorsi, P. Mariani, E. Varon, M. Smati-Lafarge, M. Caseris, R. Basmaci, N. Lachaume, and N. Ouldali, “Systematic Severe Acute Respiratory Syndrome Coronavirus 2 Screening at Hospital Admission in Children: A French Prospective Multicenter Study,” Clinical Infectious Diseases 72, no. 12 (2021): 2215–2217.CrossRefGoogle ScholarPubMed
Leidman, L. M. Duca, Omura, J. D., Proia, K., Stephens, J. W., and Sauber-Schatz, E. K., “COVID-19 Trends Among Persons Aged 0-24 Years — United States, March 1 – December 12, 2020,” Morbidity and Mortality Weekly Report 70, no. 3 (2021): 8894.Google ScholarPubMed
Kim, L., Garg, S., O’Halloran, A., Whitaker, M., Pham, H., Anderson, E. J., Armistead, I., Bennett, N. M., Billing, L., Como-Sabetti, K., Hill, M., Kim, S., Monroe, M. L., Muse, A., Reingold, A. L., Schaffner, W., Sutton, M., Talbot, H. K., Torres, S. M., Yousey-Hindes, K., Holstein, R., Cummings, C., Brammer, L., Hall, A. J., Fry, A. M., and Langley, G. E., “Risk Factors for Intensive Care Unit Admission and In-hospital Mortality among Hospitalized Adults Identified through the U.S. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET),” Clinical Infectious Diseases 72, no. 9 (2021): e206e214; L. Kim, M. Whitaker, A. O’Halloran, and the COVID_NET Surveillance Team, “Hospitalization Rates and Characteristics of Children Aged <18 Years Hospitalized with Laboratory–Confirmed COVID-19–COVID–NET, 14 States, March 1–July 25, 2020,” Morbidity and Mortality Weekly Report 69, no. 32 (2020): 1081–1088.Google Scholar
Zimet, S. M. Perkins, Sturm, L. A., Bair, R. M., Juliar, B. E., and Mays, R. M., “Predictors of STI Vaccine Acceptability Among Parents and their Adolescent Children,” Journal of Adolescent Health 37, no. 3 (2005): 179186.CrossRefGoogle ScholarPubMed
D. Remnick, When Parents Forbid the COVID Vaccine (June 2021), The New Yorker, available at <https://www.newyorker.com/news/q-and-a/when-parents-forbid-the-covid-vaccine> (last visited April 19, 2024).+(last+visited+April+19,+2024).>Google Scholar
Patryn, R. and Zagaja, A., “Vaccinations — Between Free Will and Coercion,” Human Vaccines and Immunotherapeutics 12, no. 8 (2016): 22042205.Google ScholarPubMed
Wood, L. Morris, Davies, M., and Elwyn, G., “What Constitutes Consent When Parents and Daughters Have Different Views About Having the HPV Vaccine: Qualitative Interviews with Stakeholders,” Journal of Medical Ethics 37, no. 8 (2011): 466471.Google ScholarPubMed
See S. Agrawal and S. Morain, supra note 13.Google Scholar
See P. Alderson, supra note 30.Google Scholar
Morgan, L., Schwartz, J. L., and Sisti, D. A., “COVID-19 Vaccination of Minors without Parental Consent,” JAMA Pediatrics 175, no. 10 (2021): 995996; J. R. Delgado and L.N. Mansfield, et al., “Adolescent Self-Consent for COVID-19 Vaccination: Views of Healthcare Workers and Their Adolescent Children on Vaccination Autonomy,” Journal of Adolescent Health 72, no. 5 (2023): 674-681, doi: 10.1016/j.jadohealth.2022.12.018, Epub 2023 Feb 10, PMID: 36775750; PMCID: PMC9916604..Google ScholarPubMed
See F. Wood et al., supra note 48.Google Scholar
Jena, A. B., Goldman, D. P., and Seabury, S. A., “Incidence of Sexually Transmitted Infections After Human Papillomavirus Vaccination Among Adolescent Females,” Journal of American Medical Association Internal Medicine 175, no. 4 (2015): 617623.Google ScholarPubMed
Kliewer, E. V., Mahmud, S. M., Demers, A. A., and Lambert, P., “Human Papillomavirus Vaccination and Pap Testing Profile in Manitoba, Canada,” Vaccine 32, no. 1 (2013): 3338; N. C. Liddon, J. S. Leichliter, and L. E. Markowitz, “Human Papillomavirus Vaccine and Sexual Behavior Among Adolescent and Young Women,” American Journal of Preventative Medicine 42, no. 1 (2012): 44–52; L. Sadler, S. A. Roberts, G. Hampal, D. McManus, D. Mandal, and L. Brabin, “Comparing Risk Behaviors of Human Papillomavirus–Vaccinated and Non–Vaccinated Women,” Journal of Family Planning and Reproductive Health Care 41, no. 4 (2015): 255–258.Google Scholar