Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T17:46:24.329Z Has data issue: false hasContentIssue false

Provision of bone conduction hearing implants in England in adults and children: a review of Hospital Episode Statistics data 2012–2021

Published online by Cambridge University Press:  08 March 2024

Alison Conybeare*
Affiliation:
Department of Otolaryngology, Birmingham Children's Hospital, Birmingham, UK
Lauren Bennett
Affiliation:
Department of Otolaryngology, Russells Hall Hospital, Birmingham, UK
Max S Osborne
Affiliation:
Department of Otolaryngology, Russells Hall Hospital, Birmingham, UK
*
Corresponding author: Alison Conybeare; Email: Alison.conybeare1@nhs.net

Abstract

Objective

Bone conduction hearing implants are a well-established method of hearing rehabilitation in children and adults. This study aimed to review any changes in provision in England.

Methods

The total number of bone conduction hearing implantations performed was analysed from 2012 to 2021 utilising Hospital Episode Statistics data for England.

Results

The total number of procedures has increased by 58 per cent. One-stage bone conduction hearing implantations in adults accounts for the largest proportion of this increase (93 per cent of the total). The number performed in children has remained stable and accounts for 73 per cent (n = 433) of all two-stage procedures.

Conclusion

The data show that bone conduction hearing implant surgery is becoming increasingly popular, particularly in adults. This has correlated with the increase in availability, national recommendations and choice of devices.

Type
Main Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Alison Conybeare takes responsibility for the integrity of the content of the paper

References

Calon, T, Johansson, M, de Bruijn, A, van den Berge, HWM, Eichhorn, E, Janssen, M et al. Minimally invasive Ponto surgery versus the linear incision technique with soft tissue preservation for bone conduction hearing implants: a multicentre randomised controlled trial. Otol Neurotol 2018;39:882–93CrossRefGoogle Scholar
McElveen, JJ, Green, JJ, Arriaga, M, Slattery, WH 3rd. Next-day loading of a bone-anchored hearing system: preliminary results. Otolaryngol Head Neck Surg 2020;163:582–7CrossRefGoogle ScholarPubMed
Lagerkvist, H, Carvalho, K, Holmberg, M, Petersson, U, Cremers, C, Hultcrantz, M. Ten years of experience with the Ponto bone-anchored hearing system - a systematic literature review. Clin Otolaryngol 2020;45:667–80CrossRefGoogle ScholarPubMed
Ellsperman, SNE, Stucken, E. Review of bone conduction hearing devices. Audiol Res 2021;11:207–19CrossRefGoogle ScholarPubMed
den Besten, C, Monksfield, P, Bosman, A, Skarzynski, P, Green, K, Runge, C et al. Audiological and clinical outcomes of a transcutaneous bone conduction hearing implant: six-month results form a multicentre study. Clin Otolaryngol 2019;44:144–57CrossRefGoogle Scholar
Van der Gucht, K, Vanderveken, O, Hamans, E, Claes, J, Van Rompaey, V, Van de Heyning, P. Adverse skin reactions following percutaneous bone conduction implant surgery using the linear incision technique with and without subcutaneous tissue reduction. Acta Otolaryngol 2017;137:149–53CrossRefGoogle ScholarPubMed
Gawliczek, T, Munzinger, F, Anschuetz, L, Caversaccio, M, Kompis, M, Wimmer, W. Unilateral and bilateral audiological benefit with an adhesively attached, noninvasive bone conduction hearing system. Otol Neurotol 2018;39:1025–30CrossRefGoogle ScholarPubMed
Oberlies, N, Castano, J, Freiser, M, McCoy, J, Shaffer, A, Jabbour, N. Outcomes of BAHA connect vs BAHA attract in pediatric patients. Int J Pediatr Otorhinolaryngol 2020;135:110125CrossRefGoogle ScholarPubMed
Shapiro, S, Ramadan, J, Cassis, A. Skin complications in the pediatric population: systematic review with meta-analysis. Otol Neurotol 2018;39:865–73CrossRefGoogle ScholarPubMed
Bezdjian, A, Bruijnzeel, H, Daniel, S, Grolman, W, Thomeer, H. Preliminary audiologic and peri-operative outcomes of the Sophono transcutaneous bone conduction device: a systematic review. Int J Pediatr Otorhinolaryngol 2017;101:196203CrossRefGoogle ScholarPubMed
NHS Commissioning Board. Clinical Commissioning Policy: Bone Anchored Hearing Aids, April 2013. In: https://www.england.nhs.uk/wp-content/uploads/2013/04/d09-p-a.pdf [15 November 2023]Google Scholar
Gawecki, W, Gibasiewicz, R, Marszal, J, Blaszczyk, M, Gawlowska, M, Wierzbicka, M. The evaluation of a surgery and the short-term benefits of a new active bone conduction hearing implant - the Osia. Braz J Otorhinolaryngol 2022;88:289–95CrossRefGoogle ScholarPubMed
Kruyt, I, Bakkum, K, Caspers, C, Hol, M. The efficacy of bone-anchored hearing implant surgery in children: a systematic review. Int J Pediatr Otorhinolaryngol 2020;132:109906CrossRefGoogle ScholarPubMed
van der Stee, E, Strijbos, R, Bom, S, Hol, M. Percutaneous bone-anchored hearing implant surgery: linear incision technique with tissue preservation versus linear incision technique with tissue reduction. Eur Arch Otorhinolaryngol 2018;275:1737–47CrossRefGoogle ScholarPubMed
Posta, B, Perenyi, A, Szabo, L, Nagy, R, Katona, G, Csakanyi, Z et al. Pediatric morphometric study to guide the optimized implantation of the Osia 2 implant system. Eur Arch Otorhinolaryngol 2022;279:4909–15CrossRefGoogle ScholarPubMed
Fussey, J, Harterink, E, Gill, J, Child-Hymas, A, McDermott, AL. Clinical outcomes following Cochlear BIA300 bone anchored hearing aid implantation in children. Int J Pediatr Otorhinolaryngol 2018;111:8992CrossRefGoogle ScholarPubMed
Lui, C, Livingstone, D, Yunker, W. The role of bone conduction hearing aids in congenital unilateral hearing loss: a systematic review. Int J Pediatr Otorhinolaryngol 2017;94:4551Google Scholar
Dimitriadis, P, Hind, D, Wright, K, Proctor, V, Greenwood, L, Carrick, S et al. Single-centre experience of over a hundred implantations of a transcutaneous bone conduction device. Otol Neurotol 2017;38:1301–7CrossRefGoogle Scholar
Snapp, HMK, Kuzbyt, B. Speech perception outcomes in transcutaneous versus percutaneous bone conduction stimulation in individuals with single-sided deafness. Otol Neurolotol 2019;40:1068–75CrossRefGoogle ScholarPubMed
Medel. Bone Conduction Implant. In: https://www.medel.com/en-gb/hearing-solutions/bonebridge [15 November 2023]Google Scholar
NHS England. Clinical Commissioning Policy: Bone conducting hearing implants (BCHIs) for hearing loss (all ages). In: https://www.england.nhs.uk/commissioning/wp-content/uploads/sites/12/2013/05/16041_FINAL.pdf [13 July 2016]Google Scholar
Lau, K, Scotta, G, Wright, K, Proctor, V, Greenwood, MD, Ray, J. First United Kingdom experience of the novel Osia active transcutaneous piezoelectric bone conduction implant. Eur Arch Otorhinolaryngol 2020;277:29953002CrossRefGoogle ScholarPubMed
The quality of clinical coding in the NHS: Payment by Results Data Assurance Framework. In: https://www.chks.co.uk/userfiles/files/The_quality_of_clinical_coding_in_the_NHS.pdf [September 2014]Google Scholar
Osborne, MS, Child-Hymas, A, Holmberg, M, Thomsen, P, Johansson, ML, McDermott, AL. Clinical evaluation of a novel LASER-ablated titanium implant system for bone anchored hearing systems in a pediatric population and the relationship of resonance frequency analysis with implant survival. Otol Neurotol 2022;43:219–26CrossRefGoogle Scholar
Osborne, MS, Hoskison, E, Child-Hymas, A, Gill, J, McDermott, AL. Five-year clinical outcomes and evaluation following implantation of the Oticon wide bone anchored hearing system in 47 children. Int J Pediatr Otorhinolaryngol 2020;137:110244CrossRefGoogle ScholarPubMed