Skip to main content Accessibility help

Multi-level obstruction in obstructive sleep apnoea: prevalence, severity and predictive factors

  • C Q Phua (a1), W X Yeo (a1), C Su (a2) and P K H Mok (a1)



To characterise multi-level obstruction in terms of prevalence, obstructive sleep apnoea severity and predictive factors, and to collect epidemiological data on upper airway morphology in obstructive sleep apnoea patients.


Retrospective review of 250 obstructive sleep apnoea patients.


On clinical examination, 171 patients (68.4 per cent) had multi-level obstruction, 49 (19.6 per cent) had single-level obstruction and 30 (12 per cent) showed no obstruction. Within each category of obstructive sleep apnoea severity, multi-level obstruction was more prevalent. Multi-level obstruction was associated with severe obstructive sleep apnoea (more than 30 events per hour) (p = 0.001). Obstructive sleep apnoea severity increased with the number of obstruction sites (correlation coefficient = 0.303, p < 0.001). Multi-level obstruction was more likely in younger (p = 0.042), male (p = 0.045) patients, with high body mass index (more than 30 kg/m2) (p < 0.001). Palatal (p = 0.004), tongue (p = 0.026) and lateral pharyngeal wall obstructions (p = 0.006) were associated with severe obstructive sleep apnoea.


Multi-level obstruction is more prevalent in obstructive sleep apnoea and is associated with increased severity. Obstruction at certain anatomical levels contributes more towards obstructive sleep apnoea severity.


Corresponding author

Address for correspondence: Dr C Q Phua, Department of Otorhinolaryngology, Khoo Teck Puat Hospital, 90 Yishun Central, Singapore 768828 E-mail:


Hide All
1 Young, T, Peppard, PE, Gottlieb, DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 2002;165:1217–39
2 Ishman, SL, Ishii, LE, Gourin, CG. Temporal trends in sleep apnea surgery: 1993–2010. Laryngoscope 2014;124:1251–8
3 Caples, SM, Rowley, JA, Prinsell, JR, Pallanch, JF, Elamin, MB, Katz, SG et al. Surgical modifications of the upper airway for obstructive sleep apnea in adults: a systematic review and meta-analysis. Sleep 2010;33:1396–407
4 Fujita, S. UPPP for sleep apnea and snoring. Ear Nose Throat J 1984;63:227–35
5 Lin, HC, Friedman, M, Chang, HW, Gurpinar, B. The efficacy of multilevel surgery of the upper airway in adults with obstructive sleep apnea/hypopnea syndrome. Laryngoscope 2008;118:902–8
6 Riley, RW, Powell, NB, Guilleminault, C. Obstructive sleep apnea syndrome: a surgical protocol for dynamic upper airway reconstruction. J Oral Maxillofac Surg 1993;108:117–25
7 Verse, T, Baisch, A, Maurer, JT, Stuck, BA, Hormann, K. Multilevel surgery for obstructive sleep apnea: short-term results. Otolaryngol Head Neck Surg 2006;134:571–7
8 Friedman, M, Ibrahim, H, Bass, L. Clinical staging for sleep-disordered breathing. Otolaryngol Head Neck Surg 2002;127:1321
9 Friedman, M, Ibrahim, H, Joseph, NJ. Staging of obstructive sleep apnea/hypopnea syndrome: a guide to appropriate treatment. Laryngoscope 2004;114:454–9
10 Abdullah, VJ, van Hasselt, CA. Video sleep nasendoscopy. In: Terris, DJ, Goode, RL, eds. Surgical Management of Sleep Apnea and Snoring. Boca Raton, FL: Taylor & Francis, 2005;143–54
11 Friedman, M, Lin, HC, Gurpinar, B, Joseph, NJ. Minimally invasive single-stage multilevel treatment for obstructive sleep apnea/hypopnea syndrome. Laryngoscope 2007;117:1859–63
12 Tishler, PV, Larkin, EK, Schluchter, MD, Redline, S. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. JAMA 2003;289:2230–7
13 Bixler, EO, Vgontzas, AN, Ten Have, T, Tyson, K, Kales, A. Effects of age on sleep apnea in men: prevalence and severity. Am J Respir Crit Care Med 1998;157:144–8
14 Romero-Caorral, A, Caples, SM, Lopez-Jimenez, F, Somers, VK. Interactions between obesity and obstructive sleep apnea. Chest 2010;137:711–19
15 Rudnick, EF, Walsh, JS, Hampton, MC, Mitchell, RB. Prevalence and ethnicity of sleep-disordered breathing and obesity in children. Otolaryngol Head Neck Surg 2007;137:878–82
16 Shelton, KE, Woodson, H, Gay, S, Suratt, PM. Pharyngeal fat in obstructive sleep apnea. Am Rev Respir Dis 1993;148:462–6
17 Kim, AM, Kennan, BT, Jackson, N, Chan, EL, Staley, B, Poptani, H et al. Tongue fat and its relationship to obstructive sleep apnea. Sleep 2014;37:1639–48
18 Fritscher, LG, Mottin, CC, Canani, S, Chatkin, JM. Obesity and obstructive sleep apnea-hypopnea syndrome: the impact of bariatric surgery. Obes Surg 2007;17:95–9
19 Pang, KP, Terris, DJ, Podolsky, R. Severity of obstructive sleep apnea: correlation with clinical examination and patient perception. Otolaryngol Head Neck Surg 2006;135:555–60
20 Ritter, CT, Trudo, FJ, Goldenberg, AN, Welch, KC, Maislin, G, Schwab, RJ. Quantitative evaluation of the upper airway during nasopharyngoscopy with the Müller maneuver. Laryngoscope 1999;109:954–63
21 Faber, CE, Grymer, L, Norregaard, O, Hilberg, O. Flextube reflectometry for localization of upper airway narrowing - a preliminary study in models and awake subjects. Respir Med 2001;95:631–8
22 Torre, C, Camacho, M, Liu, SY, Huon, LK, Capasso, R. Epiglottis collapse in adult obstructive sleep apnea: a systemic review. Laryngoscope 2016;126:515–23
23 Aboussouan, LS, Golish, JA, Wood, BG, Mehta, AC, Wood, DE, Dinner, DS. Dynamic pharyngoscopy in predicting outcome of uvulopalatopharyngoplasty for moderate and severe obstructive sleep apnea. Chest 1995;107:946–51
24 Rama, AN, Tekwani, SH, Kushida, CA. Site of obstruction in obstructive sleep apnea. Chest 2002;122:1139–47
25 Kezirian, EJ, Goldberg, AN. Hypopharyngeal surgery in obstructive sleep apnea: an evidence-based medicine review. Arch Otolaryngol Head Neck Surg 2006;132:206–13



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed